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ABSTRACT 

 

This study investigated atmospheric particulate matter (PM) with an aerodynamic diameter of < 2.5 µm (PM2.5) observed 

at the Prince of Songkla University (Phuket Campus) in southern Thailand. All samples (n = 75) were collected using 

MiniVol™ portable air samplers from March 2017 to February 2018. Carbonaceous aerosol compositions, i.e., organic 

carbon (OC) and elemental carbon (EC), water-soluble ionic species (WSIS), and polycyclic aromatic hydrocarbons (PAHs) 

in the PM2.5 samples were identified and quantified. We found that the average PM2.5 concentration was 42.26 ± 13.45 µg m–3, 

while the average concentrations of OC and EC were 3.05 ± 1.70 and 0.63 ± 0.58 µg m–3, respectively. The OC/EC ratio 

was in the range of 2.69–16.9 (mean: 6.05 ± 2.70), and the average concentration of 10 selected ions was 6.91 ± 3.54 µg m–3. 

The average concentration of SO4
2– was the highest throughout the entire study period (2.33 ± 1.73 µg m–3); the average 

contribution of SO4
2– to the major ionic components was 34%. Surprisingly, the average concentrations of NO3

– and NH4
+ 

were relatively low. The mean ratio of [NO3
–]/[SO4

2–] was 0.33 ± 0.24. Strong positive correlation was found between K+ 

and both OC and EC (r = 0.90 and r = 0.93, respectively). It is also precious to highlight that biomass burning (BB) is the 

major source of OC, EC and K+, which multiple studies have confirmed that the role of K+ as a biomass marker. Results 

showed that BB episodes might play a major role in producing the observed high levels of OC. The relatively high abundance 

of both B[g,h,i]P and Ind suggests that motor vehicles, petroleum/oil combustion, and industrial waste burning are the 

primary emission sources of PAHs in the ambient air of Phuket. Interestingly, principal component analysis (PCA) indicated 

that vehicular exhausts are the main source of carbonaceous aerosol compositions found in the ambient air of Phuket, whereas 

the contributions of biomass burning, diesel emissions, sea salt aerosols and industrial emissions were also important. 
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INTRODUCTION 

 

Although air pollution is primarily an urban phenomenon, 

it is an important problem globally. In population centres  
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such as Thailand, large quantities of fuel are consumed in 

various economic sectors, for e.g., industry (Gocht et al., 2001; 

Vicente and Alves, 2018; Salma et al., 2020), transportation 

(Silva, 2005; Zhang et al., 2014; Lin et al., 2019), and 

electricity generation (Dung, 1996; Chen et al., 2020). 

Combustion of fossil fuels such as coal and petroleum is 

responsible for causing the majority of air pollution (Sookkai et 

al., 2000; Vicente and Alves, 2018; Salma et al., 2020). Air 

pollution in the form of dust, especially particulate matter 

(PM) with an aerodynamic diameter of < 2.5 µm (PM2.5), is 

https://creativecommons.org/licenses/by/4.0/
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among the most dangerous. This is because it can affect the 

human respiratory system (Wheeler et al., 2006; Doiron et al., 

2019; Lelieveld et al., 2019; Nhung et al., 2019), exacerbating 

conditions such as bronchitis, influenza, pneumonia, 

emphysema, and asthma, especially in children, the elderly, 

and people with underlying cardiopulmonary/respiratory 

diseases (Jinsart et al., 2002; Cohen et al., 2017; Lelieveld 

et al., 2019). 

Carbonaceous aerosols have been studied thoroughly over 

recent decades because they can affect human health, 

ecosystems, and the climate system (Shih et al., 2008; Chen 

et al., 2017; Pani et al., 2018). Another major concern is that 

they are persistent organic pollutants that can remain in the 

environment for long periods (Jones and Voogt, 1999; 

Dachs and Eisenreich, 2000; Al-Mulali et al., 2015; Bakirtas 

and Akpolat, 2018). Several studies have investigated the 

presence of carcinogenic and/or mutagenic substances in the 

atmosphere, derived via gas-particle partitioning, e.g., 

polycyclic aromatic hydrocarbons (PAHs) and polychlorinated 

biphenyls, the origin of which is incomplete combustion 

attributable to both natural and anthropogenic sources 

(Zhang et al., 2014; Achten and Andersson, 2015; Wincent 

et al., 2016; Bocchi et al., 2017; Idowu et al., 2019). These 

substances, which are classified as semi-volatile compounds, 

can be released as solid material or vapour that can adhere to 

the surface of other particles (Smith and Harrison, 1998; Jones 

and Voogt, 1999; Dachs and Eisenreich, 2000; Schummer et 

al., 2010; Lawal, 2017). Thus, they can spread from their 

source via many media, posing a danger to human health and 

the ecosystem. Therefore, measurement of the concentration 

of these carbonaceous aerosols is highly important. 

Over the past few decades, BB and traffic emissions have 

been extensively evaluated in the northern and central parts 

of Thailand its release large amounts of particulate matter, 

including, OC-EC, WSIS and PAHs that increased 

environmental pollution (Chaiyo et al., 2011, 2013; 

Duangkaew et al., 2013; Pongpiachan, 2013; Pongpiachan 

et al., 2013; Tsai et al., 2013; Chaiyo and Garivait, 2014; 

Pongpiachan et al., 2014a, b; Janta and Chantara, 2017; 

Pongpiachan et al., 2017; Pani et al., 2018; Thepnuan et al., 

2019; Choochuay et al., 2020). In Thailand, information on 

PAHs, carbonaceous compositions, i.e., organic carbon (OC) 

and elemental carbon (EC), and water-soluble ionic species 

(WSIS) in the ambient air of southern parts of the country is 

rare. Previous study of carbonaceous aerosols in the coastal 

city of Hat-Yai (southern Thailand) found that aged marine 

aerosols from long-range transportation and/or particles 

from biomass burning (BB) made a major contribution to the 

carbonaceous aerosols measured at the top of a building in 

the study area (Pongpiachan et al., 2009, 2013). Therefore, 

this study selected an observation site at the Prince of 

Songkla University (Phuket Campus) in southern Thailand 

to investigate atmospheric PM2.5. Phuket is the largest island 

in Thailand. It is located in the south and encircled by the 

Andaman Sea. It has long slender shape with north-south 

orientation. In addition, Phuket has several other large and 

small satellite islands. Approximately 70% of the land area is 

mountainous, while the remaining 30% comprises plains. The 

climate of Phuket is warm and moist throughout the year. 

The first unambiguous evidence that the air pollution seen 

frequently in fine atmospheric particles is caused by human 

activities became available several decades ago. Comprehension 

of the composition and major sources of carbonaceous 

aerosols is important for improving air quality. Therefore, the 

objective of this study was to determine the characteristics of 

OC, EC, WSIS, and PAHs in the PM2.5 samples obtained at 

the study site. The analysis focused primarily on the 

following: (i) characterization of the chemical compounds 

detected in the PM2.5 samples, (ii) statistical analysis of the 

chemical composition and its relation to source identification, 

and (iii) statistical source apportionment of the chemical 

composition, including OC, EC, WSIS, and PAHs. 

 

MATERIALS AND METHODS 

 

Air Quality Observatory Sites 

The aerosol sampling campaign was undertaken at 

Building 6 of the Prince of Songkla University (Phuket 

Campus) in Thailand (Fig. 1). Phuket, the largest island in 

Thailand, is in the south and surrounded by the Andaman 

Sea. The main island has long slender shape with north-south 

orientation and it has several other large and small satellite 

islands. Around 70% of the land area is mountainous, while the 

remaining 30% comprises plains. The climate of Phuket is 

warm and moist throughout the year. The MiniVol™ air 

samplers were installed on the rooftop of Building 6 (4th Floor): 

7.89318°N, 98.35209°E (GPS coordinates: 7°53′35.5′′N, 

98°21′07.5′′E). The monitoring campaign was conducted 

from March 2017 to February 2018. 

Samples of PM2.5 (n = 75) were obtained using MiniVol™ 

portable air samplers (Airmetrics, USA) with 47-mm quartz 

filters and a flow rate of 5 L min–1. All samples were 

collected over 72-h periods. All PM2.5 samples were stored 

carefully in individual petri slide dishes and refrigerated to 

retain their chemical composition until required for further 

analysis. The quartz-fibre filter samples were divided into 

two segments. One of the filters was analyzed for OC-EC, 

and the other one was analyzed for PAHs and WSIS. 

 

Chemical Analysis 

Carbonaceous Aerosol Analyses: Organic Carbon (OC) 

and Elemental Carbon (EC) 

The measurements of carbonaceous aerosol compositions 

including calibration and quality assurance/quality control 

(QA/QC) processes were performed at the laboratory of the 

Institute of Earth Environment, Chinese Academy of 

Science (Xian, China). The protocols adopted were the same 

as reported previous by Chow et al. (2007). Normally, the 

OC content was considered as the sum of individual OC 

fractions (i.e., OC1 + OC2 + OC3 + OC4) and the EC 

content was considered as the sum of individual EC fractions 

(i.e., EC1 + EC2 + EC3 + OP), based on the IMPROVE_A 

thermal optical reflectance protocol (Fung et al., 2002; 

Chow et al., 2007). 

Carbonate carbon was determined through assessment of 

CO2 acidification from organic samples prior to the normal 

carbon analysis procedure. Seven temperatures were used 

for different fractions. The temperature protocol was applied  
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Fig. 1. Location of the sampling site used in this study. 

 

to separate OC and EC in a process similar to the thermal 

optical reflectance and thermal optical transmittance pyrolysis 

correction. This protocol produces evaluations of total OC, 

total EC, and total carbon (TC), monitored by both reflectance 

and transmittance. For the QA/QC procedures that have been 

described elsewhere (Cao et al., 2003), the instrument was 

calibrated daily with known quantities of methane. Replicate 

analyses were performed for each group for 10 samples and 

the relative deviation of the replicate analyses was < 5% for 

TC and < 10% for both OC and EC. 

 

Water-soluble Ionic Species (WSIS) 

The concentrations of WSIS included five cations (i.e., 

Na+, NH4
+, K+, Mg2+, and Ca2+) and five anions (i.e., Cl–, F–, 

NO2
–, NO3

–, and SO4
2–). An ion chromatograph with a 

separation column was used for the extraction from all PM2.5 

samples. The QA/QC procedure for this analysis required all 

glassware to undergo ultrasonic cleaning and oven drying at 

450°C for approximately 6 h. All solvents used in the analysis 

procedure were pesticide residue grade (Wang et al., 2005). 

 

Polycyclic Aromatic Hydrocarbons (PAHs) 

The concentrations of PAHs in the PM2.5 samples were 

measured using in-injection port thermal desorption coupled 

with gas chromatography/mass spectrometry, which quantified 

the concentration of 19 PAHs as non-polar organic compounds. 

This analytical procedure is similar to the alternative method of 

traditional solvent extraction followed by gas chromatography/ 

mass spectrometry analysis. The analytical procedures have 

been described in previous studies (Ho and Yu, 2004). 

 

Statistical Analysis 

This study used the SPSS System for Windows Version 

22 to produce descriptive statistics (minimum, maximum, 

mean, and standard deviation) of the measured concentrations 

of PAHs, carbonaceous compositions, and WSIS. We also 

used PCA for identification of source appointment. 

 

RESULTS AND DISCUSSION 

 

Concentrations of Total Carbon (TC), Organic Carbon 

(OC), and Elemental Carbon (EC) 

The average concentrations of each carbon fraction for 

OC, EC, TC, and PM2.5 in the samples from Phuket are 

presented in Table 1, and the concentrations of OC and EC 

in each individual sample are shown in Fig. 2. 

Seinfeld and Pandis (2006) reported that the highest 

carbonaceous fraction of fine atmospheric PM is OC at 70–

80%, followed by EC and inorganic carbon at 5%. The 

average concentrations of carbonaceous chemical components 

found in our samples are listed in Table 1. It can be seen that 

of the OC fractions, OC3 was the highest, followed in 

descending order by OC4, OC2, and OC1. For the EC 

fractions, EC1 was the highest, followed by EC2 and EC3. 

In characterizing the chemical composition of aerosols in 

northern Indochina in March and April 2010, Chuang et al. 

(2013) found OC3 to be a reasonable tracer of BB, whereas 

OC2 is known as a tracer of both coal combustion (Chow et 

al., 2004) and vehicular exhausts (Cheng et al., 2015). 

In observations of ambient air throughout an entire year 

in Phuket, the OC fraction was found to be the major 

component because it is released directly into the ambient 

air following incomplete combustion of organic compounds 

(Jimenez et al., 2008). It can be emitted directly from 

various sources such as industrial processes and natural 

occurrences, e.g., BB (primary OC) or it can be formed from 

gas-particle partitioning in the air (secondary OC: SOC). It 

is well known that OC can have substantial impact on human 

health (Mauderly and Chow, 2008). Conversely, the EC 

fraction was found to be much lower than the OC fraction. 
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Table 1. Concentrations of OC, EC, TC, and PM2.5 samples from Phuket, Thailand. 

Species Minimum (µg m–3) Maximum (µg m–3) Mean ± SD (n = 75) 

OC1 0.00 0.22 0.04 ± 0.05 

OC2 0.22 1.56 0.53 ± 0.23 

OC3 0.73 5.34 1.57 ± 0.75 

OC4 0.12 3.37 0.71 ± 0.62 

OC 1.08 10.90 3.05 ± 1.70 

EC1 0.10 3.74 0.70 ± 0.64 

EC2 0.00 0.28 0.13 ± 0.06 

EC3 0.00 0.00 0.00 ± 0.00 

EC 0.09 3.90 0.63 ± 0.58 

TC 1.17 14.80 3.67 ± 2.25 

PM2.5 20.07 91.02 42.26 ± 13.45 

 

 

Fig. 2. Average concentration of seasonal variation of OC and EC in PM2.5 samples collected in Phuket. 

 

As the chemical structure of EC is similar to that of impure 

graphite, it appears reasonable to assume that vehicular 

exhausts are a major source of EC. Consequently, the most 

important sources of EC are fossil fuel combustion and/or 

BB (Gelencsér, 2004). 

The mean values of OC and EC in the PM2.5 samples of 

this study were 3.05 ± 1.70 and 0.63 ± 0.58 µg m–3, 

respectively. These values are much smaller in comparison 

with those from other areas. However, the average mean 

concentrations of OC and EC determined in this study are 

similar to those reported in autumn and winter in Cape Hedo, 

Okinawa (Kunwar and Kawamura, 2014). Generally, EC is 

released from any combustion source and it is usually used 

as a tracer of primary OC (Turpin and Huntzicker, 1995). 

Hence, the relationship between OC and EC can be used to 

estimate the source of carbonaceous particles. The relationship 

between OC and EC in the PM2.5 samples obtained in Phuket 

in this study is illustrated in Fig. 3. The large R2 values (0.86) 

have been found in this study indicated that the impact of 

local primary sources (traffic and biomass burning) have a 

big role in Phuket’s atmosphere. 

 

OC/EC Ratios and Secondary Organic Carbon (SOC) 

Contributions 

OC/EC Ratios 

Carbonaceous compounds represent a significant fraction 

of atmospheric aerosols, accounting for 20–35% of PM10 

and 20–45% of PM2.5 (Yttri et al., 2007; Putaud et al., 2010). 

The OC/EC ratio is applied frequently to explain the 

emission sources of carbonaceous aerosol compounds (Han 

et al., 2007, 2009; Wu et al., 2019; Xing et al., 2020). In our 

study, the OC/EC ratios determined in this study were in the 

range of 2.69–16.9 with an annual mean value of 6.05 ± 2.70. 

The season averaged OC/EC ratios are 4.94 (hot), 6.84 

(rainy), and 5.70 (cool) (Fig. 4). 

The measurement of atmospheric PM2.5-bound carbonaceous 

aerosol composition widely studied in Thailand, especially 

in the northern and the central part of Thailand. In this study, 

the annual mean OC/EC ratios value is 1.1 times lower than 

the value reported from Chiang-Mai, Thailand (Choochuay 

et al., 2020). Most of the time previous studies the 

availability of data from southern Thailand is limited. The 

chemical characteristics of carbonaceous aerosols and PAHs 

of PM10 in the city of Hat-Yai in southern Thailand have 

been studied by Pongpiachan et al. (2014a). Their study 

suggested that the persistence of OC/EC ratios could have 

been attributable from BB, vehicular, industrial emissions, 

and/or long-range transportation and agricultural waste 

burning aerosols. The OC/EC ratio can be used to estimate the 

primary sources of pollution. Several studies on carbonaceous 

PM in different parts of the world have reported that high 

OC/EC ratios are related to SOC (Chow et al., 1993; Turpin   
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Fig. 3. EC vs. OC correlation in the PM2.5 samples collected in Phuket during March 2017 to February 2018. 

 

 

Fig. 4. The OC/EC ratios obtained in Phuket during March 2017 to February 2018. 

 

and Huntzicker, 1995). Carbonaceous aerosols with OC/EC 

values > 2 can be considered to contain significant quantities 

of SOC, which lager OC/EC values are also attributed to 

(i) biogenic emissions, (ii) BB aerosols (Wu et al., 2019; 

Kalita et al., 2020; Kaskaoutis et al., 2020). In this study, the 

range of OC/EC ratios was 2.69–16.9 (mean: 6.05 ± 2.70). 

However, a high value of the OC/EC ratio (12) was reported 

by Cao et al. (2005) in aerosols derived from residential coal 

combustion. The result from recent study in Southeast Asia 

regions (SEA) reported that the Biomass burning and biogenic 

emissions were significantly larger compared to other regions 

in south Asia (Kalita et al., 2020). However, the concentrations 

of carbonaceous compounds vary inter-regionally in relation 

to local emissions and weather (Heald et al., 2008). 
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Estimation of Secondary Organic Carbon (SOC)  

The SOC contribution can be estimated by measuring OC 

and EC concentrations and an appropriately selected 

primary OC to EC ratio. Many studies have used a widely 

accepted EC tracer method to measure SOC. Using this 

method, the contribution of SOC can be calculated based on 

the minimum values of OC/EC ratios, where EC is used as 

a measure of primary OC (Castro et al., 1999). In this study, 

SOC was estimated using the following equation: 

 

SOC = OCtotal – EC × (OC/EC)pri (1) 

 

where OCtotal represents the total OC and (OC/EC)pri is the 

mean of the three lowest OC/EC ratios. 

The mean of the three lowest OC/EC ratios (2.79) was 

applied in this study to estimate the SOC content of the 

PM2.5 samples. Based on this technique, it was determined 

that the annual mean value of SOC was 1.30 ± 1.63 µg m–3 

and the highest value was 2.82 µg m–3. The percentage 

contribution of SOC to OCtotal was 42.6% in this study. This 

value is 1.4 times lower than the value (59.2%) detected in 

Okinawa, Japan (Kunwar and Kawamura, 2014) and 1.5 times 

lower than both the value (67.8%) reported for Hat-Yai, 

Thailand (Pongpiachan et al., 2014a) and the value (65%) 

found in Claremont, USA (Na et al., 2004). Conversely, our 

value is 2.5 times higher than that observed in Birmingham, 

United Kingdom (Castro et al., 1999). Our result is close to 

that found by Li et al. (2009) in their study conducted at a 

coastal site (37.7%), and similar to values observed in 

Kaohsiung in Taiwan (40%) by Lin and Tai (2001). The 

application of diagnostic binary ratios of OC/EC and 

estimations of secondary organic carbon (SOC) in this study 

highlighted that the enhanced impacts of incomplete 

combustion emissions, such as motor vehicle exhaust, fuel 

burning, and biomass burning, which can be remained in the 

atmosphere for several days (Wu et al., 2019; Kaskaoutis et 

al., 2020). 

 

Atmospheric Concentrations of Water-soluble Ionic 

Species (WSIS) and PAHs in PM2.5 

Given that Phuket is the largest island in Thailand, it was 

considered important to examine the impact of marine 

aerosols on the characterization of carbonaceous compositions. 

The chemical characteristics of WSIS have been studied 

thoroughly in different areas of the world. Several studies 

have reported that SO4
2– and Cl– are the main contributors to 

WSIS found in marine aerosols, whereas NH4
+ and K+ are 

the main contributors to WSIS in aerosols attributable to BB 

(Kocaka et al., 2007; Park and Cho, 2011). 

The individual and average concentrations of 10 selected 

ions (SO4
2–, Na+, Ca2+, Cl–, NO3

–, NO2
–, NH4

+, K+, Mg2+ and 

F–) considered in this study are presented in Table 2. 

Several previous studies have used diagnostic ratios to 

analyse the sources of marine aerosols and non-marine 

aerosols or non-sea-salt for WSIS (Karthikeyan and 

Balasubramanian, 2006). Previous work has reported that 

the sources of K+, SO4
2–, and Ca2+ are not solely from marine 

aerosols (Wang and Shooter, 2001). Therefore, the contribution 

of each of these ions from non-sea-salt sources was 

calculated using the following equations (Hedge et al., 2007; 

George et al., 2008; Behrooz et al., 2017):  

 

nss-SO4
2– = (SO4

2–) – 0.2516*(Na+) (2) 

 

nss-Ca2+ = (Ca2+) – 0.0385*(Na+) (3) 

 

nss-K+ = (K+) – 0.037*(Na+) (4) 

 

*Note, nss-SO4
2–, nss-Ca2+, and (nss-K+ can be used in the 

formulas above, assuming that marine aerosols are the same 

as sea-salt in terms of chemical composition. Meanwhile, 

Na+ has been used as a marker for marine aerosols, by 

assuming that whole Na+ comes from the marine source. 

(George et al., 2008; Behrooz et al., 2017). 

Based on the OC/EC ratios in this study, long-range 

atmospheric transport of BB plumes from nearby countries 

could represent one source. In this region, BB is a widespread 

activity and it is known that PM is transported from 

Indonesia (Southeast Asia) into southern Thailand (Phairuang 

et al., 2020). Moreover, strong correlation (r = 0.94) was 

found between nss-K+ and OC, which was found related to 

long-range atmospheric transport and the influence of BB on 

organic aerosols during the cool period.  

Previous study reported that SO4
2–, K+, and NH4

+ are the 

major fractions in the form of secondary inorganic aerosols 

and biomass burning. Moreover, WSIS of NH4
+, K+, Ca2+, 

Na+ were extracted from the PM2.5 ambient air samples, 

which Na+, NH4
+, and Cl– are mainly originated from aged 

 

Table 2. Concentrations of water-soluble ionic species (WSIS) observed in the PM2.5 samples from Phuket, Thailand. 

Ionic Species Mean (µg m–3) Min. (µg m–3) Max. (µg m–3) % mass of total ion content 

F– 0.09 ± 0.01 0.07 0.12 1 

Cl– 0.53 ± 0.28 0.32 2.47 8 

NO2
– 0.30 ± 0.19 0.00 0.73 4 

NO3
– 0.53 ± 0.21 0.00 1.62 8 

SO4
2– 2.33 ± 1.73 0.33 9.21 34 

Na+ 1.47 ± 0.39 0.65 3.04 21 

NH4
+ 0.29 ± 0.32 0.00 2.38 4 

K+ 0.28 ± 0.24 0.00 1.58 4 

Mg2+ 0.13 ± 0.03 0.06 0.24 2 

Ca2+ 0.96 ± 0.14 0.66 1.37 14 

Total 6.91 ± 3.54 - - - 
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sea salt and mixed industrial, whilst Mg2+ and Ca2+ are 

generally made from mineral dust (Dahari et al., 2019). In 

this study, the average SO4
2–concentration was the highest 

throughout the entire study period for all season (Fig. 5). 

As previously mentioned, the most dominant species in 

this study were SO4
2–, Na+ and Ca2+ which mainly contributed 

from secondary inorganic aerosols, biomass burning, sea 

salt and mixed industrial for the ambient air in Phuket 

(Dahari et al., 2019). The statistics showed that there were 

no obvious differences on F–, Cl–, NO2
– and NO3

– in all 

seasons, while SO4
2–, Na+, Ca2+, NH4

+, K+ and Mg2+ were 

obvious differences between rainy and cool (p > 0.05). 

For the classification, [NO3
–]/[SO4

2–] ratios were applied 

carefully to identify the incidence of stationary sources (e.g., 

boilers industries, power plants, etc.) and mobile sources 

(e.g., vehicular exhausts) of nitrogen and sulphur. They are 

generally formed via atmospheric reactions of their gaseous 

phase, e.g., NOx and SO2. Normally, SO2 is released via coal 

combustion, whilst NOx results from any type of combustion, 

e.g., coal power plants and vehicular emissions in aerosols 

(Liu et al., 2011; Mkoma et al., 2014 Javid et al., 2015; Park 

et al., 2015; Deng et al., 2016; Huang et al., 2016). A high 

[NO3
–]/[SO4

2–] ratio (1.06) was found in a region with high 

levels of vehicular emissions (Li et al., 2009). The mean 

[NO3
–]/[SO4

2–] ratio found during the annual was 0.33 ± 

0.24, while the season averaged ratios were 0.22 (hot), 0.31 

(rainy), and 0.17 (cool). It is lower than that found in other 

areas in summer in China, e.g., Beijing (0.83), Tianjin (0.71), 

and Shijiazhuan (0.56) (Dao et al., 2014). Hence, this result 

means that the local sources from vehicular emissions 

(tracers for NO3
–) are limited and the ratio decreases, as 

sulfate has more regional sources. The high temperatures in 

Phuket modulate particulate nitrate into the gaseous phase, 

which reduces the [NO3
–]/[SO4

2–] ratio (Cuccia et al., 2013; 

Titos et al., 2014; Dumka et al., 2017). However, the ratio 

of 0.3–0.5 found in this study is also lower than that usually 

found in China because of the widespread use of sulphur-

containing coal by the Chinese (Yao et al., 2002). 

The ions SO4
2– and NH4

+ are secondary ions that have a 

complex reaction in that NH4
+ responds rapidly with SO4

2– 

to the constant form of ammonium salts (Lai et al., 2007; Li 

et al., 2012; Wang et al., 2013). Generally, SO4
2– is influenced 

by anthropogenic sources in industrial areas. The concentration 

of SO4
2– was significantly higher than that of Na+ and Cl–, 

whereas nss-SO4
2– was the primary species for acid 

replacement (Zhang et al., 2010). Similar to other ions with 

anthropogenic sources (e.g., NO3
–), the correlation with 

those of nss-SO4
2– was reasonable (Zhang et al., 2010). 

In general, Na+ and Cl– are the sea salt ions that form the 

largest fractions in marine aerosols. In this study, the highest 

concentrations of Na+ and Cl– were 1.47 ± 0.39 and 0.53 ± 

0.28 µg m–3, which accounted for 21.0% and 8.0% of the 

total ionic species, respectively. For marine aerosols, Zhang 

et al. (2010) reported that sea salt aerosols (i.e., NaCl) can 

 

 

Fig. 5. (A) Annual concentration of individual WSIS, Percentage contributions of individual WSIS in (B) hot, (C) rainy and 

(D) cool season collected from Phuket. 
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emit HCl via exchange with sulphuric acid and nitric acid, 

which results in a shortage of Cl– relative to Na+. The annual 

average equivalent ratios of Cl–/Na+ in the aerosols from 

Phuket were 3.4 and 3.2 times lower than those on Yongxing 

Island and those of seawater, respectively (Table 3). In our 

study, we find that there is chloride depletion is the result of 

the interaction of sea salt with acidic species, nitrate, sulfate 

followed by the losing of Cl– in term of HCl gas (Stogiannidis 

and Laane, 2015). Moreover, the ratio of Mg2+ to Na+ was 

0.09, which is 2.3 and 2.4 times lower in comparison with 

the values from Yongxing Island and seawater, suggesting 

that the ratio of Mg2+/Na+ (Mg2+ loss) in PM2.5 samples maybe 

due to the leach of magnesium chloride (MgCl2), which is a 

component of bittern in sea salt. 

 

Correlations of Chemical Composition of PM2.5 and its 

Relation to Source Identification 

Some ions in carbonaceous aerosol composition such as 

K+, SO4
2–, and Ca2+ have multiple sources, e.g., ocean and 

land surfaces. Additionally, nss-SO4
2– in the atmosphere can 

be derived from various sources. It originates from the 

combustion of fossil fuels such as coal, oil, and natural gas 

(Cuccia et al., 2013; Kunwar and Kawamura, 2014; Titos et 

al., 2014; Dumka et al., 2017). In Phuket, we found the 

highest concentrations of carbonaceous aerosols found in 

OC and SO4
2– were 3.05 and 2.33 µg m–3, respectively. 

Several previous studies reported that SO4
2– and Cl– are the 

principal species of WSIS normally found in marine aerosols, 

whereas K+ and NH4
+ are the primary species associated 

with BB and agricultural waste burning (Matsumoto et al., 

1998; Kocaka et al., 2007; Park and Cho, 2011; Pongpiachan 

et al., 2014a). The correlations of OC, EC, and WSIS shown 

in Table 4. The results showed strong correlation between 

K+ and both OC (r = 0.89) and EC (r = 0.93). It is well 

known that K+ is a marker of BB (Kundu et al., 2010), 

whereas EC is a marker of incomplete combustion of 

biomass and/or fossil fuel. We also found strong correlation 

between nss-K+ and both EC (r = 0.93) and OC (r = 0.89); 

therefore, BB episodes might also play a major role in 

generating the higher OC concentrations. Previous analysis 

of satellite imagery revealed evidence of frequent BB 

episodes in southern Thailand, e.g., in preparation for 

agriculture, agricultural produce burning, and forest fires. 

Among the ions measured in this study, NH4
+ was 

strongly correlated with K+ (r = 0.81). It is assumed that one 

effect of BB was significant enrichment in PM2.5. Previous 

studies related that fertilizer use as well as agriculture waste 

and related domestic activities are sources of gaseous 

ammonia emissions (Thepanondh et al., 2005).  

 

Concentrations of Polycyclic Aromatic Hydrocarbons 

(PAHs)  

The concentrations of PAHs are summarized in Table 5. 

The total concentration of all 19 PAHs was 0.3780 ± 

0.3480 ng m–3. The values determined in this study are lower 

than those measured in other areas of Thailand such as 

Chiang-Mai and Bangkok, which are known as heavily 

polluted areas (Pongpiachan, 2013; Pongpiachan et al., 2014b). 

Several previous studies have investigated the environmental 

cycle of PAHs in different environmental situations in 

Thailand (Pongpiachan, 2013; Pongpiachan et al., 2014b, 

2015). In northern Thailand, BB, forest fires, and 

agricultural waste burning during winter emit large quantities 

of PM into the atmosphere, especially ultra-fine particles that 

include PM2.5-bound PAHs (Vadrevu et al., 2015, 2019). In 

central Thailand, vehicular emissions represent a major 

contributor to atmospheric PM. However, in southern 

Thailand, especially Phuket, the limited availability of PAH 

data makes it difficult to identify the sources of the pollution 

emitted into the atmosphere. 

The concentrations of the individual PAHs in the PM2.5 

samples obtained in Phuket during March 2017 to February 

2018 decreased in the following order: B[g,h,i]P > Ind > Phe 

> B[a]A > Cor > B[b]F > B[k]F > B[a]P > B[e]P > Ace > 

D[a,h]A > Fluo > Fl > Pyr > D[a,e]P > Chry > Ant > Per > 

B[a]F. Of the 16 priority PAHs identified by the United 

States Environmental Protection Agency, 9 are emitted via 

combustion processes such as those involving coal, diesel, 

and petroleum. Ravindra et al. (2008) reported that Flu, Pry, 

B[a]A, Chry, B[b]F, B[k]F, B[a]P, B[g,h,i]P, and Ind are 

combustion PAHs. The ratios of the concentrations of these 

combustion PAHs have been analysed in many studies to 

identify the sources of the PAHs in aerosols (Manoli et al., 

2004). In this study, high abundances of B[g,h,i]P and Ind 

were detected, indicating that motor vehicles, petroleum/oil 

combustion, and industrial waste burning are emission 

sources of the PAHs found in the ambient air of Phuket 

(Zhou et al., 1999; Ravindra et al., 2008). 

 

Table 3. Comparison of equivalent ratios of ionic species in aerosols observed in Phuket, on Yongxing Island (Xiao et al., 

2017), and those in seawater (Keene et al., 1986). 

Ion ratios Phuket Island Yongxing Island Seawater 

Cl–/Na+ 0.37 1.25 1.17 

Mg2+/Na+ 0.09 0.21 0.22 

K+/Na+ 0.19 0.048 0.021 

Ca2+/Na+ 0.68 0.62 0.044 

SO4
2–/Na+ 1.54 0.66 0.12 

nss-SO4
2–/Na+ 1.33 0.54 - 

NO3
–/Na+ 0.37 0.18 - 

NH4
+/Na+ 0.20 0.022 - 

NO3
–/nss-SO4

2– 0.27 0.34 - 

NH4
+/nss-Ca2+ 0.32 0.038 - 
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Table 4. Pearson correlation analysis of OC, EC, and WSIS in PM2.5 samples obtained from Phuket during March 2017 to 

February 2018. 

 F– Cl– NO2
– NO3

– SO4
2– Na+ NH4

+ K+ Mg2+ Ca2+ nss-SO4
2– nss-Ca2+ nss-K+ OC EC 

F– 1               

Cl– 0.13 1              

NO2
– 0.24* 0.00 1             

NO3
– 0.17 0.15 0.52** 1            

SO4
2– –0.16 –0.07 –0.02 0.55** 1           

Na+ –0.01 0.58** –0.05 0.40** 0.61** 1          

NH4
+ 0.07 –0.12 0.20 0.67** 0.73** 0.27* 1         

K+ –0.05 –0.08 0.14 0.50** 0.79** 0.39** 0.81** 1        

Mg2+ 0.13 0.33** 0.03 0.47** 0.46** 0.71** 0.37** 0.32** 1       

Ca2+ 0.00 0.15 0.02 0.34** 0.72** 0.60** 0.52** 0.65** 0.50** 1      

nss-SO4
2– –0.16 –0.11 –0.01 0.55** 0.99** 0.58** 0.74** 0.79** 0.44** 0.71** 1     

nss-Ca2+ 0.00 0.10 0.03 0.32** 0.69** 0.53** 0.53** 0.65** 0.45** 0.99** 0.68** 1    

nss-K+ –0.05 –0.12 0.14 0.49** 0.77** 0.34** 0.82** 0.99** 0.28* 0.63** 0.78** 0.63** 1   

OC –0.07 –0.12 0.06 0.41** 0.73** 0.39** 0.72** 0.89** 0.28* 0.59** 0.73** 0.58** 0.89** 1  

EC –0.04 –0.15 0.10 0.46** 0.77** 0.36** 0.78** 0.93** 0.25* 0.58** 0.78** 0.58** 0.93** 0.93** 1 

t-test is < 0.01 for the correlation where r is > 0.70. 

 

Table 5. Summary of PAH concentrations in Phuket, Thailand.  

PAH (ng m–3) Mean SD Min. Max. 

Ace 0.0140 0.0096 0.0015 0.0507 

Fl 0.0112 0.0079 0.0082 0.0270 

Phe 0.0409 0.0411 0.0261 0.0711 

Ant 0.0067 0.0045 0.0059 0.0160 

Fluo 0.0120 0.0120 0.0070 0.0221 

Pyr 0.0110 0.0127 0.0062 0.0160 

B[a]A 0.0340 0.0163 0.0206 0.0581 

Chry 0.0067 0.0070 0.0028 0.0099 

B[b]F 0.0239 0.0220 0.0228 0.0464 

B[k]F 0.0238 0.0229 0.0086 0.0340 

B[a]F 0.0032 0.0030 0.0025 0.0057 

B[e]P 0.0144 0.0134 0.0056 0.0169 

B[a]P 0.0174 0.0190 0.0072 0.0224 

Per 0.0048 0.0058 0.0029 0.0061 

Ind 0.0507 0.0500 0.0359 0.0652 

B[g,h,i]P 0.0575 0.0590 0.0348 0.0709 

D[a,h]A 0.0133 0.0118 0.0243 0.0032 

Cor 0.0239 0.0208 0.0185 0.0356 

D[a,e]P 0.0085 0.0091 0.0069 0.0129 

ΣPAHs* 0.3780 0.3480 - - 

*ΣPAHs is the sum of Ace, Fl, Phe, Ant, Fluo, Pyr, B[a]A, Chry, B[b]F, B[k]F, B[a]F, B[e]P, B[a]P, Per, Ind, B[g,h,i]P, 

D[a,h]A, Cor, and D[a,e]P 

 

Principal Component Analysis (PCA) 

We used PCA to identify potential sources of the 

carbonaceous and WSIS compositions of the PM2.5 samples. 

The PCA method is a multivariate procedure that links 

multivariate data reduction by transforming the data into 

rectangular components. Hence, PCA reduces multidimensional 

data into smaller dimensions (Wold et al., 1987). In this 

section, source identification coupled with quantitative source 

apportionment of targeted chemical species is considered 

using PCA. 

In this study, the concentrations of OC, EC, WSIS, and 19 

individual PAHs from 75 samples were collected as active 

variables. The majority of the variance (82.8%) of the scaled 

data was explained by five eigenvectors/principal components 

(PCs) (Table 6). The first PC (PC1) accounts for 55.5% of 

the total variance, while the second PC (PC2) explains 10.9% 

of the total variance, followed by PC3–PC5 that describe 

10.6%, 5.2%, and 3.7% of the total variance, respectively. 

In accounting for 55.5% of the total variance, PC1 showed 

high loading of B[g,h,i]P, Cor, Ind, B[e]P, B[b]F, D[a,h]A, 

B[a]F, Pyr, B[a]P, B[k]F, Fluo, Chry, D[a,e]P, and Ant with 

corresponding correlation coefficients of 0.946, 0.938, 

0.936, 0.893, 0.886, 0.874, 0.852, 0.850, 0.849, 0.835, 0.795, 

0.774 0.761, and 0.623, respectively. Anthropogenic activity  
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Table 6. Rotated component matrixa of carbonaceous compounds, WSIS, and 19 individual PAHs in the PM2.5 samples from 

Phuket, Thailand. 

Compositions 
Principal Component (PC) 

PC1 PC2 PC3 PC4 PC5 

TC 0.423 0.854 0.139 0.033 –0.005 

OC 0.441 0.824 0.157 0.041 –0.023 

EC 0.345 0.895 0.080 0.007 0.050 

F– –0.225 –0.002 –0.038 0.052 0.618 

Cl– –0.050 –0.218 –0.015 0.810 0.060 

NO2
– 0.229 –0.050 –0.014 –0.055 0.774 

NO3
– 0.191 0.387 0.215 0.284 0.694 

SO4
2- 0.315 0.754 0.198 0.297 –0.020 

Na+ 0.155 0.308 0.101 0.883 –0.043 

NH4
+ 0.312 0.734 0.265 0.022 0.345 

K+ 0.424 0.845 0.127 0.090 0.077 

Mg2+ –0.013 0.299 0.154 0.718 0.211 

Ca2+ 0.130 0.625 0.291 0.452 –0.071 

Ace 0.259 0.092 0.838 0.053 0.011 

Fl 0.119 0.486 0.663 0.017 0.287 

Phe 0.408 0.478 0.614 0.075 0.212 

Ant 0.623 0.336 0.595 0.079 0.069 

Fluo 0.795 0.465 0.324 0.030 0.041 

Pyr 0.850 0.436 0.218 0.014 0.046 

B[a]A 0.257 0.187 0.780 0.178 –0.127 

Chry 0.774 0.571 0.202 0.015 0.026 

B[b]F 0.886 0.322 0.171 –0.013 0.014 

B[k]F 0.835 0.379 0.176 0.018 –0.021 

B[a]F 0.852 0.290 0.233 0.007 0.114 

B[e]P 0.893 0.328 0.231 0.032 0.008 

B[a]P 0.849 0.399 0.244 0.061 0.015 

Per 0.373 –0.021 0.069 0.000 –0.208 

Ind 0.936 0.255 0.133 0.047 –0.005 

B[g,h,i]P 0.946 0.200 0.149 0.050 –0.005 

D[a,h]A 0.874 0.109 0.069 0.057 0.031 

Cor 0.938 0.163 0.090 0.037 0.018 

D[a,e]P 0.761 0.095 0.045 0.099 –0.046 

Variance [%] 55.5 10.9 6.1 5.2 5.1 

Estimated source Vehicular  

Exhausts 

Biomass  

Burning 

Diesel 

Emissions 

Sea Salt  

Aerosols 

Industrial 

Emissions 
a Rotation Method: Varimax with Kaiser Normalization. 

Bold: loading > 0.5 

 

is concentrated in urban areas; therefore, these positive 

loadings in PC1 could be attributed to anthropogenic activities 

involving combustion of coal, diesel, and petroleum. In 

particular, the high levels of molecular 4–6 ring PAHs found 

in PC1 could be related to vehicular exhausts (Miguel and 

Pereira, 1989; Harrison et al., 1996) and/or gasoline vehicles 

(Schauer et al., 2002, Teixeira et al., 2013). 

Significant correlations of EC, TC, K+, OC, SO4
2–, NH4

+, 

Ca2+, and Chry were found in PC2 with correlation coefficients 

of 0.895, 0.854, 0.845, 0.824, 0.754, 0.734, 0.625, and 0.571, 

respectively, accounting for 10.9% of the total variance. 

This PC is believed to be the biomass burning source of 

carbonaceous compositions. Due to OC, EC and K+ are 

generated from biomass burning, BB emissions contain a 

significant amount of WSIS, such as NH4
+ and K+ (Lee et 

al., 2016; Pani et al., 2018). Moreover, OC and EC can be 

related to biomass burning as well (Mkoma et al., 2013). 

As illustrated in Table 6, PC3 represented 6.1% of the 

total variance. Several studies reported that Phe and Ant 

could be used as geochemical tracers of PM released from 

diesel engine exhausts and coal combustion (Fang et al., 

2006). Findings of a previous study that analysed air samples 

collected at Singapore suggested that PAH congeners with 

two and three rings were higher in concentration while the 

levels of the PAHs of higher molecular weight, four to six 

rings, are less. The difference in the concentration trends may 

be a result of the distinctive depletion rates of individual 

PAHs related differences in fuel characteristics (See. et al., 

2006). In this study, Phe exhibited the highest atmospheric 

concentrations with an average value of 0.041 ± 0.041 µg m–3.  

PC4 represented 5.2% of the total variance. The 

comparatively high loadings of Na+ (r = 0.883), Cl– (r = 
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0.810), and Mg2+ (r = 0.718) underline the importance of 

marine aerosols, which explanation is in good compliance 

with previous studies conducted in Auckland and Brisbane, 

underlined that Cl– as a chemical tracer of maritime aerosols 

(Chan et al., 1997; Wang et al., 2005). 

PC5 represented 5.1% of the total variance, with a high 

loading factor for NO2
–, NO3

– and F–. Over recent decades, 

numerous studies have underlined the importance of 

industrial activities as one of the major sources of particulate 

F– in the urban atmosphere (Lovelock, 1971; Haidouti et al., 

1993; Mukherjee et al., 2003). For instance, hydrofluoric 

acid is used widely in the manufacture of chemicals and 

plastics and in laundries (WHO, 2000). The relatively low 

percentage contribution of industrial emissions was found in 

reasonable accord with the fact that the factories in Phuket 

account for only 0.31% of total number of factories in 

Thailand, based on a statistical survey conducted by the 

Department of Industrial Works of the Ministry of Industry 

in 2019. Consequently, it appears plausible that “industrial 

emissions” represented by PC5 account for only 5.1% of the 

total variance. 

 

CONCLUSIONS 

 

This study investigated the carbonaceous aerosol 

compositions (OC, EC, WSIS, and PAHs) of PM2.5 samples 

obtained in Phuket. The average PM2.5 concentration was 

1.7 times higher than the USEPA standard. The application 

of diagnostic binary ratios of OC/EC and estimations of 

secondary organic carbon (SOC) in this study highlighted that 

the enhanced impacts of incomplete combustion emissions, 

such as motor vehicle exhaust, fuel burning, and biomass 

burning. Strong correlation (r = 0.80) was found between 

nss-K+ and OC, which was also shown to be affected 

significantly by long-range atmospheric transport of organic 

aerosols associated with BB. In this study, the concentration 

of individual PAHs relatively high abundances of B[g,h,i]P 

and Ind were detected, indicating that motor vehicles, 

petroleum/oil combustion, and industrial waste burning are 

emission sources of the PAHs found in the ambient air of 

Phuket. 

Source identification of the chemical species by PCA 

revealed that five sources of carbonaceous composition 

observed in the PM2.5 samples explained 82.8% of the total 

variance. The highlight showed that vehicular exhausts, BB, 

diesel emissions, sea salt aerosols, and industrial emissions 

accounted for 55.5%, 10.9%, 6.1%, 5.20%, and 5.1% of the 

total variance, respectively. Interestingly, the PCA result 

showed vehicular exhausts as the main source. However, the 

contributions of both marine aerosols and BB to SOC also 

played a major role. Overall, 17.2% of the variance could 

not be attributed to the five primary local and/or regional 

sources; this proportion was considered to originate from 

other combustion activities such as incinerators, incense 

burning, and cooking. 
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