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Key Points: 

 A statistical approach was developed to investigate secondary brown carbon (BrC) 

absorption over the southeastern Tibetan Plateau 

 Secondary sources were the major contributors to the BrC light absorption 

 Long-range transport of biomass-burning products was an important source for 

secondary BrC 
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Abstract 

The optical properties of atmospheric secondary brown carbon (BrC) aerosol are poorly 

understood because of its chemical complexity, and this has hampered quantitative 

assessments of the impacts of this light-absorbing material on glaciers on the Tibetan Plateau 

(TP). For this study, a statistical approach was developed to investigate BrC light absorption 

over the southeastern margin of the TP. Secondary sources for BrC were more important for 

absorption than primary ones. A diurnal cycle in secondary BrC absorption was explained by 

the formation of light-absorbing chromophores by photochemical oxidation after sunrise 

followed by photobleaching of the chromophores under the more oxidizing conditions as the 

day progressed. Multi-method analyses showed that biomass burning in northern Burma and 

along the Sino-Burmese border was the most important source for the secondary BrC. The 

mean integrated simple forcing efficiency was 79 W g
-1

, indicating that secondary BrC can 

cause substantial radiative effects. 

Plain Language Summary 

A statistical approach was developed to evaluate light absorption by secondary brown carbon 

(BrC) aerosol particles. We characterized the diurnal cycle of secondary BrC over the 

southeastern margin of Tibetan Plateau, identified likely pollution sources, and estimated its 

radiative effects. To our knowledge, this is the first time that light absorption from primary 

versus secondary BrC has been evaluated. This approach should be useful for further 

improving models and accurately evaluating the effects of BrC on glacial recession on the 

Tibetan Plateau. 

1 Introduction 

The Tibetan Plateau (TP) holds many glaciers, and the meltwater from them provides 

fresh water essential for a downstream population of more than 1.5 billion (Yao et al., 2012). 

There is growing concern that glaciers on the TP are in retreat, due in part to the influence of 

atmospheric black carbon (BC) and dust which are light-absorbing materials (William et al., 

2010). The optical properties and radiative effects of these two substances have been well 

documented over the past decades (e.g., Qu et al., 2014; Zhang et al., 2015; Z. Zhao et al., 

2017; Wang et al., 2018a). More recently, a group of colored organic compounds, 

collectively known as brown carbon (BrC), have been found to absorb sunlight, especially at 

short wavelengths (Andreae and Gelencsér, 2006). The radiative effects of BrC aerosols are 

influenced by their sources, optical properties, and chemical transformations (Yan et al., 
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2018). Previous studies have shown that BrC accounts for ~20 – 40% of the total 

carbonaceous aerosol absorption and causes radiative effects of +0.1 to +0.6 W m
-2

 globally 

(Park et al., 2010; Feng et al., 2013; Wang et al., 2014; Saleh et al., 2015; Jo et al., 2016). 

Limited BrC studies on the TP make it difficult to evaluate effects of BrC on the radiant 

energy budget, and this further limits our ability to evaluate effects of BrC on glacial 

recession. 

Atmospheric BrC either originates from primary emissions (i.e., biomass burning, 

coal burning, and gasoline vehicle emissions) or forms through multiphase reactions (Laskin 

et al., 2015). Previous studies have indicated that secondary organic aerosol from biomass 

burning is more absorptive for short wavelengths than the primary organic aerosol (Saleh et 

al., 2013), and thus, secondary BrC may be an important contributor to the global radiative 

forcing budget. However, direct measurements of secondary BrC light absorption are not yet 

feasible owing to the high chemical complexity of this material, and thus, the absorptivity of 

secondary BrC is not well constrained. Several studies have investigated relationships 

between light absorption and secondary organic carbon (SOC), and they have only described 

the effects of secondary BrC qualitatively (e.g., Chen et al., 2018; Li et al., 2018). Other 

studies have used stepwise multiple linear regression (MLR), a statistical technique, to 

estimate the SOC contribution to aerosol light absorption (Park et al., 2018). However, most 

of the compounds in SOC cause light scattering, and the use of total SOC concentrations 

could lead to underestimates of the light-absorbing ability of secondary BrC based on the 

MLR method. Additionally, some laboratory studies have explored the light-absorbing 

properties of secondary BrC as well as the mechanisms by which BrC forms (e.g., Nakayama 

et al., 2013; Song et al., 2013), but those studies have dealt with only a relatively small 

number of BrC species generated from typical precursors, such as toluene and α-pinene, and 

thus, they were not fully representative of secondary BrC in the atmosphere. 

Current BrC studies on the TP have mainly focused on the sources and optical 

properties of total BrC or extracted water-/methanol-soluble BrC and humic-like substances 

(e.g., Kirillova et al., 2016; Li et al., 2016a; 2016b; Zhu et al., 2017; 2018; Wu et al., 2018). 

Here, a statistical approach that we call the minimum R-squared (MRS) method was 

developed to separate light absorption by secondary BrC versus primary BrC. The advantage 

of this approach is that it is simple and straightforward provided that there are suitable 

measurements of aerosol light absorption and BC mass concentrations. The main objectives 

of the study were to (1) determine the contribution of secondary sources to BrC absorption; 
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(2) characterize the diurnal cycle in secondary BrC absorption; (3) identify probable source 

regions for the high loadings of secondary BrC; and (4) evaluate the radiative effects of 

secondary BrC. 

2 Materials and Methods 

2.1 Sampling site 

The southeastern margin of TP is a transitional zone between the high altitude TP 

(average ~4000 m above sea level, a.s.l.) and the low altitude Yunnan-Guizhou Plateau 

(average ~2000 m a.s.l.), and it has been recognized as one of the channels through which air 

pollutants from Southeast Asia are transported to the TP (S. Zhao et al., 2017). An intensive 

measurement campaign was conducted in this region at a site in Gaomeigu County, Yunnan 

Province, China (Figure S1) from 14 March to 13 May 2018. The sampling equipment was 

deployed on the rooftop of an office building (~10 m above ground level) of the Lijiang 

Astronomical Station, Chinese Academy of Sciences (100.03°E, 26.70°N; 3260 m a.s.l.). 

Gaomeigu County only has a resident population of more than one hundred persons, and 

there are no major anthropogenic sources near the sampling site. 

2.2 Aerosol absorption measurement 

Aerosol light absorption was measured using a multi-wavelength Aethalometer® 

(Model AE33, Magee Scientific, Berkeley, CA, USA) at wavelengths λ = 370, 470, 520, 590, 

660, 880, and 950 nm. Ambient air was drawn into the AE33 at a flow rate of 5 L min
-1

 

through a PM2.5 cutoff, and a Nafion® dryer (MD-700-24S-3; Perma Pure, Inc., Lakewood, 

NJ, USA) was used to dry the particles as they entered the instrument. Detailed descriptions 

of the construction and operating principles of AE33 can be found in Drinovec et al. (2015). 

Previous studies have demonstrated that filter-based absorption measurements can suffer 

from nonlinear loading effects and filter matrix scattering effects (e.g., Coen et al., 2010). A 

two parallel spot measurement technology is embedded in AE33 to eliminate the loading 

effect. Meanwhile, a factor of 2.14 was used to account for the filter matrix scattering effect 

for the quartz filters used in this study (Drinovec et al., 2015). 

2.3 Separation of secondary BrC absorption 

A MRS approach for calculating the secondary BrC absorption at different 

wavelengths (AbsBrC,sec(λ)) was developed from the widely used BC-tracer method for 
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calculating SOC (Srivastava et al., 2018). Aerosol light absorption is due to carbonaceous 

particles from both primary and secondary sources; thus, AbsBrC,sec(λ) can be calculated as: 

AbsBrC,sec(λ) = Abs(λ) − Abspri(λ)      (1) 

where Abspri(λ) is the light absorption at a given wavelength (e.g., λ = 370, 470, 520, 590, or 

660) caused by primary light-absorbing materials from combustion and non-combustion 

sources. That is, Abspri(λ) can be divided into two parts as follows: 

Abspri(λ) = Abspri,comb(λ) + Abspri,non−comb(λ)    (2) 

where Abspri,comb(λ) is caused by combustion-derived primary BrC and BC, while Abspri,non-

comb(λ) is representative of non-combustion sources, which are mostly biogenic, especially 

plant debris and humic matter (Laskin et al., 2015). Previous studies have shown that primary 

biogenic aerosol mainly exists in coarse mode (Perrino and Marcovecchio, 2016), and thus 

we assumed a negligible effect from primary biogenic BrC in this study. As we know, BC 

forms during combustion processes (Petzold et al., 2013), and the combustion-derived 

Abspri,comb(λ) can be estimated using a BC-tracer method: 

Abspri,comb(λ) = (
Abs(λ)

BC
)pri × [BC]      (3) 

where [BC] is the mass concentration of BC, and the methods used for calculating it can be 

found in Text S1 of the supporting information. (Abs(λ)/BC)pri is the ratio of the primary 

particle’s light absorption to the BC mass concentration from combustion sources. The 

underlying assumption of equation (3) is that the combustion-derived primary particle’s 

absorption originates from the same sources as BC, and therefore, there is a representative 

ratio of primary Abs(λ)/BC for a given area. This assumption is supported by results from 

biomass-burning, coal-combustion, and roadside experiments (see Text S2), which show a 

good correlation (R
2
 > 0.98) between primary Abs(λ) and BC mass (Figure S2). We note that 

(Abs(λ)/BC)pri reflects an average and effective Abs(λ)/BC ratio from mixed primary 

combustion sources in the atmosphere. Finally, by combined equations (1) through (3), 

AbsBrC,sec(λ) can be calculated by: 

AbsBrC,sec(λ) = Abs(λ) − (
Abs(λ)

BC
)
pri

× [BC]    (4) 

The key step for the analyses involving equation (4) is to find a value for Abs(λ)/BC 

that is representative of the primary combustion sources that affected the sampling site, but 

finding that value is challenging because the ratio varies among sources. We used the MRS 
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method to exploit the presumed independence of BC and AbsBrC,sec(λ) for this purpose; that 

is, we assumed that the BC particles were from primary emissions while AbsBrC,sec(λ) was 

caused by secondary organic aerosols that mainly formed through the oxidation of organic 

gases (Shrivastava et al., 2017). This assumption is supported by the result of simulation of 

secondary BrC in biomass-burning emission (see Text S2), which showed inconsistent 

variations between BC mass and AbsBrC,sec(λ) formed through a Potential Aerosol Mass 

(PAM) flow tube reactor (Figure S3). Next, a series arbitrary values for (Abs(λ)/BC)pri (e.g., 

0 – 120) was used to calculate a set of AbsBrC,sec(λ) values, and for each (Abs(λ)/BC)pri value 

tested, a coefficient of determination (R
2
) for the relationship was derived. The series of R

2 

(AbsBrC,sec(λ), BC) values was then plotted against the assumed (Abs(λ)/BC)pri values—an 

example of this for λ =370 nm is shown in Figure 1. The arbitrary (Abs(λ)/BC)pri value that 

showed the minimum R
2
 for AbsBrC,sec(λ) versus BC was the target of this analysis because it 

best met the assumption that BC and AbsBrC,sec(λ) were independent. The MRS method 

avoids uncertainty caused by different arbitrary selection criterion of (Abs(λ)/BC)pri, because 

the algorithm seeks the unique minimum point from the dataset. The bias of MRS result is < 

23% when the measurement uncertainty is within 20% (Wu and Yu, 2016). 

3 Results and discussion 

3.1 Determination of secondary BrC absorption 

The wavelength-dependence of aerosol light absorption showed a typical power law 

distribution in the range of 370 – 880 nm (Figure S4), and the average absorption Ångström 

exponent (see Text S3) was 1.6; this indicated the occurrence of BrC absorption at short 

wavelengths. Calculations based on the equations in Text S3 showed that the average 

contribution of AbsBrC(λ) to total Abs(λ) ranged from 20% to 40% (Table S1), suggesting a 

substantial BrC contribution to aerosol light absorption. As the SOC fraction of organic 

particles from remote and sparsely populated areas is often large (Zheng et al., 2017), 

secondary BrC would appear to be an important contributor to AbsBrC(λ), and thus, 

AbsBrC,sec(λ) was further quantified using the MRS method. Considering the multiplicity of 

ways in which can SOC form, the measured data were divided into daytime and nighttime 

subsets to calculate AbsBrC,sec(λ) for those periods separately. It should be noted that when the 

measured Abs(λ)/BC ratio was lower than the minimum R
2
 derived [Abs(λ)/BC]pri, the 

AbsBrC,sec(λ) would be negative, and in those cases (< 10% of data), we assumed negligible 

AbsBrC,sec(λ) contributions. As shown in Table 1, the average AbsBrC,sec(λ) contributed 70% of 
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the total AbsBrC at 370 nm, 68% at 470 nm, 91% at 520 nm, 81% at 590 nm, and 77% at 660 

nm with larger contributions for the daytime (73 – 98%) compared with the night (63 – 84%). 

These results suggest a dominant contribution from secondary sources to BrC absorption in 

the southeastern margin of TP, especially during the daytime. The large contributions of 

AbsBrC,sec(λ) at night may be attributed to the lack of photobleaching to degrade the secondary 

BrC chromophores. The components contributing to AbsBrC,sec(λ) were likely a diverse group 

of light-absorbing chromophores whose absorptivity varied with wavelength (Pretsch et al., 

2009; Samburova et al., 2016). Nonetheless, similar variations in AbsBrC,sec(λ) were found for 

different wavelengths (Table S1), and so AbsBrC,sec(370) was used as a representative value to 

explore the characteristics of secondary BrC absorption in the following discussion. 

We further used the data from biomass-burning, coal-combustion, and roadside 

experiments to determine the relative importance of AbsBrC,sec(λ) using the MRS method. 

These assessments showed that the percent contributions of AbsBrC,sec(λ) to total AbsBrC(λ) 

were relatively small for biomass-burning (9 – 23%), coal-combustion (9–19%), and traffic-

related sources (2 – 14%) (Table 1), indicating that primary BrC absorption was more 

important than that from secondary BrC in fresh emissions. The small AbsBrC,sec(λ) fraction 

for the biomass-burning and coal-combustion tests is likely due to secondary light-absorbing 

chromophores that formed through gas-to-particle conversion as the combustion products 

mixed with the diluting air (Lipsky and Robinson, 2006). On the other hand, the AbsBrC,sec(λ) 

for the roadside studies may be a result of aerosol aging processes. Altogether, this analysis 

of source emissions data further demonstrates that the MRS method is a powerful tool for 

distinguishing between primary and secondary BrC light absorption. 

3.2 Photochemical oxidation effects 

A plot of the diurnal variation in secondary BrC absorption (Figure 2a) showed that 

AbsBrC,sec(370) decreased after midnight, reached a low value of 3.2 Mm
-1

 around 04:00 local 

time (LT), and then rapidly increased at a rate of 1.2 Mm
-1

 h
-1

 to a daily maximum of 6.9 

Mm
-1

 around 07:00 LT. From then until 11:00, AbsBrC,sec(370) fluctuated at relatively high 

levels (6.3 – 6.6 Mm
-1

), then it decreased sharply at a rate of 0.5 Mm
-1

 h
-1

 and reached a 

diurnal minimum (3.0 – 3.1 Mm
-1

) in the afternoon around 16:00 – 17:00 LT. Finally, 

AbsBrC,sec(370) showed a small peak of 5 Mm
-1

 in the evening around 19:00 LT and later 

decreased once more. 
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The diurnal variability in AbsBrC,sec(370) is best explained by the combined effects of 

secondary particle formation, the decay of light-absorbing chromophores, and the dynamics 

of the planetary boundary layer (PBL). As CO is a conserved tracer of primary emissions, 

normalizing the AbsBrC,sec(370) values by the background-corrected CO mixing ratios (∆CO) 

can  minimize the PBL dilution effects (DeCarlo et al., 2010). Here, the background CO was 

defined as the lowest 1.25th percentile of the CO values measured during the entire campaign 

(Kondo et al., 2006) with the CO analyzer described in Text S4. As shown in Figure 2a, 

similar diurnal patterns were found for the normalized AbsBrC,sec(370)/∆CO ratio and 

AbsBrC,sec(370). After accounting for the effects caused by variations in the height of the PBL, 

the increasing trend in the AbsBrC,sec(370)/∆CO ratios from 06:00 – 11:00 LT indicates that 

secondary light-absorbing chromophores formed, and that was accompanied by an 

enhancement in AbsBrC,sec(370). This phenomenon can be explained by the increase in solar 

radiation after sunrise, which would promote photochemical reactions that led to the 

formation of secondary BrC. 

The decreasing trend in the AbsBrC,sec(370)/∆CO ratio between 12:00 – 16:00 LT 

suggests that light-absorbing chromophores were bleached through oxidative processes, and 

that phenomenon led to decreases in AbsBrC,sec(370). Previous studies have shown that odd 

oxygen (Ox = NO2 + O3) is an indicator of air mass aging caused by photochemical reactions 

(Canonaco et al., 2015; Wang et al., 2017a), and a strong negative correlation between 

AbsBrC,sec(370) and Ox (see Text S4) during the daytime (R
2
 = 0.80, Figure 2b) is another 

indication that photolysis and/or photo-oxidation caused photobleaching of BrC 

chromophores as the day progressed. This explanation is supported by recent chamber and 

laboratory studies, which show less absorptivity for BrC as the particles age (e.g., Sareen et 

al., 2013; Zhong and Jang, 2014; Zhao et al., 2015; Wong et al., 2017). Along these lines, 

Zhong and Jang (2014) investigated the light-absorbing properties of organic carbon from 

biomass burning in a large outdoor chamber under natural sunlight, and they found that light-

absorption by organic carbon decreased after 8 – 9 h of sunlight exposure. Finally, the small 

peak in AbsBrC,sec(370)/∆CO ratios around 19:00 LT was likely related to local cooking 

activities because biofuels, especially wood, are used for this purpose, and the gaseous 

emissions from the cooking fires can lead to secondary BrC formation before sunset (~19:45 

LT). 
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3.3 Sources of secondary BrC absorption 

To identify the source regions responsible for AbsBrC,sec(370), a concentration-

weighted trajectory (CWT) analysis was performed based on three-day air mass trajectories 

that were calculated backwards in time. Each hourly trajectory was calculated for arrival 

heights of 150 and 500 m above ground using the Hybrid Single-Particle Lagrangian 

Integrated Trajectory model (Draxler and Rolph, 2003), which was driven by full vertical 

dynamic and gridded meteorological data (Global Data Assimilation System; GDAS1, 

http://ready.arl.noaa.gov/HYSPLIT.php). A detailed description of the CWT procedures may 

be found in Wang et al. (2017b).  

The CWT maps for AbsBrC,sec(370) (Figure 3) show that the concentration gradients 

were similar for the different arrival heights, and this indicates that the CWT method 

effectively captured the large-scale flow patterns. Large CWT values were concentrated 

mainly in northern Burma and along the Sino-Burmese border, indicating strong transport of 

secondary BrC from those areas. Further, a fire count map (Figure S5a) showed extensive 

biomass-burning around those areas during the sampling period, and the total number of fire 

counts there showed a positive correlation with AbsBrC,sec(370) (R
2
 = 0.47, p < 0.01, Figure 

S5b). Combined with the CWT analysis, these results indicate that the high AbsBrC,sec(370) 

found on the southeastern margin of TP was most likely due to the long-range transport of 

biomass-burning-related secondary BrC from northern Burma and the Sino-Burmese border. 

Moderate CWT values also were found in areas near the sampling site, suggesting that 

local emissions led to the formation of some secondary BrC. Pine trees and broad-leaved 

trees are widely distributed along the southeastern margin of TP, and therefore, the photo-

oxidation of natural biogenic precursors, such as isoprene, a-pinene, and limonene (Lin et al. 

2014) is a potentially important pathway for secondary BrC formation. Meanwhile, local 

anthropogenic emissions also may have contributed to the secondary BrC formation because 

even though the population in Gaomeigu is sparse, biofuels are burned by local residents. 

Compared with northern Burma and the Sino-Burmese border, the lower CWT values in the 

areas surrounding Gaomeigu indicate lesser local effects on AbsBrC,sec(370). Moreover, it 

should be noted that even though the air masses from northeast of Gaomeigu accounted for 

only ~4% of the total trajectories, that route may be a potential source for the high secondary 

BrC at times. Indeed, some of the air masses that reached the sampling site passed through 

areas in inland China where anthropogenic emissions are strong (Kurokawa et al., 2013). 
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3.4 Implications for radiative effect and atmospheric photochemistry 

The potential for secondary BrC climatic impacts was evaluated through a “simple 

forcing efficiency” (SFE, W g
-1

) method (Bond and Bergstrom, 2006; Chen and Bond, 2010) 

(see Text S5). The integrated mean SFE for secondary BrC (SFEBrC,sec) in solar spectral range 

of 370 – 880 nm was 79 W g
-1

 (Figure S6a), and that accounted for 75% of total BrC SFE. 

Although BC was the dominant carbonaceous species in terms of a positive radiative effect 

(558 W g
-1

), the fraction of secondary BrC SFE relative to BC was 14%, suggesting a non-

negligible radiative effect from secondary BrC. Moreover, the proportion of SFEBrC,sec 

relative to BC increased to 23% when the air masses were influenced by biomass burning and 

transport was from northern Burma and the Sino-Burmese border. The uncertainty for the 

integrated SFEBrC,sec was determined quantitatively through Monte Carlo simulations. The 

probability distribution for MACBrC,sec(λ) was found to be normal, and coefficients of 

variation (CV, defined as the standard deviation/mean) ranged from 74 – 86%. The CV for 

MACBrC,sec(λ) and the normal distribution were used as input data for the Monte Carlo 

analysis, and 100,000 simulations were run to calculate the uncertainty. The probability 

distribution of SFEBrC,sec is shown in Figure S7. The mean, 2.5th percentile, and 97.5th 

percentile of integrated SFEBrC,sec were 79, 73, and 85 W g
-1

, respectively, and thus, the 

overall uncertainty for SFEBrC,sec varied from -7.3% to +7.1% at the 95% confidence interval. 

In addition to direct radiative effects, BrC also can influence atmospheric 

photochemistry indirectly by interacting with the UV wavelengths of solar radiation. For 

example, Jo et al. (2016) used a global 3-D chemical transport model to quantify the effects 

of BrC on photochemistry. Their study showed that BrC absorption could result in an 8% 

reduction in the annual NO2 photolysis rate in the lower atmosphere over Asia, and that 

would lead to a decrease of 2 ppb in the annual surface O3. Here we used the Tropospheric 

Ultraviolet and Visibility (TUV) radiation model (5.2 version, 

http://cprm.acom.ucar.edu/Models/TUV/Interactive_TUV) to compare the NO2 photolysis 

rates for BC alone versus BC plus secondary BrC. The results (Figure S6b) indicate that the 

NO2 photolysis rate would decrease by 4% due to the absorption of secondary BrC in the 

near-UV range (370−400 nm). This finding and the large fraction of secondary BrC we 

measured indicate that BrC can exert non-negligible impacts on atmospheric photochemistry 

over the southeastern margin of the TP, and therefore both the indirect and direct effects of 

BrC should be taken into account in climate assessments. 
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4 Conclusions 

We developed a statistical approach to determine the impact of secondary BrC aerosol 

on light absorption over the southeastern margin of the Tibetan Plateau. The secondary BrC 

absorption (AbsBrC,sec(λ)) accounted for 68 – 91% of the total BrC absorption, suggesting the 

dominant contribution from secondary sources for the southeastern margin of TP. The diurnal 

cycle of AbsBrC,sec(370) showed a rapid increase in secondary BrC formation after sunrise, 

whereas the light-absorbing chromophores were photobleached as a result of photo-oxidation 

processes in the afternoon. A strong negative correlation between odd oxygen and 

AbsBrC,sec(370) supported the idea that BrC chromophores were photobleached under more 

oxidizing conditions. Concentration-weighted trajectory (CWT) analyses combined with a 

positive relationship between AbsBrC,sec(370) and number of fire counts showed that biomass-

burning-related secondary BrC from northern Burma and Sino-Burmese border was an 

important source for BrC over the southeastern margin of TP. Furthermore, photo-oxidation 

of biogenic precursors was recognized as a potential pathway for secondary BrC formation in 

the thickly forested and sparsely populated area around the sampling site. A “simple forcing 

efficiency” (SFE) method showed that the integrated mean SFE of secondary BrC (SFEBrC,sec) 

in the solar spectral range of 370 – 880 nm was 79 W g
-1

, and that accounted for 75% of total 

BrC SFE during the study. The fractional SFEBrC,sec relative to that of BC was 14%, and this 

ratio increased to 23% when the air masses were affected by biomass burning, suggesting a 

non-negligible radiative effect from secondary BrC. Monte Carlo simulations showed that the 

uncertainty for the integrated SFEBrC,sec varied from -7.3% to +7.1% at the 95% confidence 

interval. Results obtained from the Tropospheric Ultraviolet and Visibility (TUV) radiation 

model showed that secondary BrC absorption in the near-UV range of 370 – 400 nm may 

decrease the NO2 photolysis rate by 4%, and therefore BrC evidently can influence the 

atmospheric photochemistry in the southeastern margin of TP. 
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Table 1. Aerosol light absorption contributed by total brown carbon (AbsBrC) and secondary brown 

carbon (AbsBrC,sec) for the sampling period and for selected emission sources. 

Paramete

r 
Period 

Wavelength 

370 nm 470 nm 520 nm 590 nm 660 nm 

AbsBrC 

Daytime 9.2
a
 (36%)

b
 8.0 (39%) 4.3 (28%) 4.3 (30%) 2.8 (19%) 

Nighttime 10.6 (39%) 8.8 (41%) 4.8 (30%) 4.7 (32%) 2.7 (20%) 

All day 9.8 (38%) 8.4 (40%) 4.6 (29%) 4.5 (31%) 2.8 (20%) 

       

AbsBrC,sec 

Daytime 7.1 (77%)
c
 5.9 (73%) 4.2 (98%) 3.7 (86%) 2.0 (73%) 

Nighttime 6.6 (63%) 5.5 (63%) 4.0 (84%) 3.5 (75%) 2.2 (82%) 

All day 6.9 (70%) 5.7 (68%) 4.1 (91%) 3.6 (81%) 2.1 (77%) 

AbsBrC 

Biomass 

burning 
2438 (69%) 855 (51%) 438 (37%) 255 (28%) 131 (19%) 

Coal 

combustion 
512 (11%) 310 (9%) 232 (8%) 116 (4%) 90 (4%) 

Traffic source 11.2 (15%) 8.2 (13%) 5.2 (9%) 4.5 (9%) 3.6 (8%) 

       

AbsBrC,sec 

Biomass 

burning 
215 (9%) 85 (10%) 59 (14%) 49 (19%) 40 (23%) 

Coal 

combustion 
44.8 (9%) 34.3 (11%) 27.7 (12%) 22.2 (19%) 16.8 (19%) 

Traffic source 1.2 (11%) 0.4 (5%) 0.7 (14%) 0.2 (5%) 0.1 (2%) 

a
the units for light absorption are Mm

-1
; 

b
the contribution of AbsBrC to total aerosol light absorption; 

c
the contribution of AbsBrC,sec to AbsBrC. 
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Figure 1. Coefficients of determination (R
2
) for secondary brown carbon absorption at λ = 

370 nm (AbsBrC,sec(370)) versus black carbon (BC) mass concentration plotted against the 

primary emission ratios for light absorption and BC (Abs(370/BC)pri). The computer program 

used for minimum R squared analysis may be found in https://zenodo.org/record/832396. 

  



 

 

© 2019 American Geophysical Union. All rights reserved. 

 

Figure 2. (a) Diurnal variations (local time, LT) of secondary brown carbon absorption at λ = 

370 nm (AbsBrC,sec(370)), AbsBrC,sec(370)/(background-corrected CO, ∆CO), and odd oxygen 

(Ox = NO2 + O3) mixing ratios and (b) the relationship between AbsBrC,sec(370) and Ox 

during the daytime. 
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Figure 3. Maps of the concentration-weighted trajectories (CWT, Mm
-1

) for secondary 

brown carbon absorption at λ = 370 nm (AbsBrC,sec(370)) at arrival heights of (a)150 m and (b) 

500 m above ground level during the campaign. The CWT analysis was conducted by the 

TrajStat software (Wang et al., 2009). 


