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Abstract— Levoglucosan, as a biomass tracemd sixteen polycyclic aromatic hydrocarbons
(PAHSs) in PM s ambient air samples collected from Tak Provincendgusmoke and non-smoke
episodes were analyzed. The average £Mvoglucosan and total PAHs concentrations irstheke
episode were 61.64 + 22.85, 1.00 + QuInT and 6.32 + 2.26 ngfinrespectively. This figures were
significantly higher than those recorded during ibe-episode (13.76 + 5.58, 0.12 + 0.03 |fgamd
259 + 0.15 ng/Mh respectively). The predominant PAHs proportiongrav comprised of
Phenanthrene and Bengbi]perylene and levoglucosan concentrations revealstfong correlation
with PM,s concentrations, which indicated the source of,PK¥fom biomass burning. Toxicity
equivalent (TEQ,p and the mutagenic equivalent (MEQ levels during the smoke episode were
significantly higher than those in the non-smokésege. Furthermore, lifetime lung cancer risk
recorded during smoke episode exceeded the actemuimhcer risk that has been recommended by
US-EPA. These results suggest that this area wasnip exposed to PAHs that originated from
traffic combustion, but was also exposed from bissn&urning emissions, particularly during
biomass burning season when there is an incredskesl of cancer and mutation. Although the
exposure time in this area is relatively short, tiigh dose period of exposure occurs repetitively
every year. In addition, backward trajectories shdvthat most of the air mass was generated from
western region of Thailand and they were throughioeitburning region not only emitted from local

areas, but also from outside the country duringstheke episode.

Keywords: PM, s, PAHSs, Levoglucosan, Biomass burning tracer, Lecangcer risk
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1.INTRODUCTION

The northern region of Thailand is well known faxperiencing severe smoke-caused air
pollution every year during the dry season (Wiwatkate and Liwsrisakun, 2011). Open burning is
one of the crucial issues in northern Thailand,d.and Myanmar and in some areas of Vietnam and
Cambodia. (Streets et al., 2008er et al., 2010; Lee et al., 2011; Huang et al., 2@0bovicheval et
al., 201%. The pivotal instances of open burning activitteat occur in the dry season include
agriculture waste burning, rice straw burning ahd tighting of wildfires Garivait et al., 2008;
Chantara et al., 2012). Traditional slash-and-tagmicultural processes are in part the causesi®f th
problem. This traditional practice is hard to chamgcause it is an inexpensive method that farmers
have used to clear surface biomass for generatleadjng to faster crop rotation, and enabling
farmers to limit the presence of undesirable wegdsts and plant-based diseases (Pongpiachan,
2016; Kim Oanh et al., 2011a). Biomass burningasstdered a potential major source of toxic
compounds releases into the atmosphere such asufd matters (PM), polycyclic aromatic
hydrocarbons (PAHSs), water-soluble organic cartWW&QC), elemental carbon (EC), organic carbon,
(OC), anhydrosugars and volatile organic carbor@QY (Lemieuxa et al., 2004; Estrellan and lino, 2010;
Chuang et al., 2013; Zhu et al., 201Fhese compounds produce a local, regional, &tthbimpacts on
air quality Chen et al., 2017)At impact present, fine particles of smaller tab pm in diameter
(PM,) are a critical topic of study (Pongpiachan et 2015a, 2017a). The smaller size fraction of
these particles enables them to be absorbed iatalteolar region of the respiratory system with fa
better efficiency than coarse particles (Harrisod ¥in, 2000). PMs has been tied to increased risks
of severe asthma attacks as well as to an increasedf medication among children who have
asthma (Slaughter et al., 2003). Furthermore, PAtésknown to be important substances that are
attached to PM. There are a large group of orgemmepounds that have two or more fused aromatic
(benzene) rings. They are formed mainly as a restilpyrolytic processes, especially in the
incomplete combustion of organic materials durimduistrial and anthropogenic processes (Hagedorn
et. al., 2009 and WHO, 2000). They have a relatiV@lv in water solubility, but highly lipophilic.
The main sources of PAHs emission include not drigmass burning, but also motor vehicles,
industrial processes, domestic heating, waste@nation and tobacco smoke (Ré-Poppi and Santiago-
Silva, 2005). Consequently, these substances enteiqy widely distributed as environmental
contaminants (Ilgwe and Ukaogo, 2015). Human exgosuthese substances can occur in indoor and
outdoor environments by inhalation, the ingestibfood and through contact with skin (Pongpiachan
et al., 2015b, 2017b). PAHs have received an isegtamount of attention in recent years in a range
of air pollution studies because some of these comgis are highly carcinogenic or mutagenic
(IARC, 1983). Although there are hundreds of PApksshaps the most important is berggpyrene
(BaP) (WHO, 2000). BaP is commonly present alontp wither PAHSs in cigarette smoke, grilled and

broiled foods, and as a by-product in several itrthlgrocesses. It can be easily dispersed into th
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ambient air, indoor air, and in some water sou(@dsSDR, 1995). In addition, Levoglucosan (1,6-
anhydro-B-D-glucopyranose) is a major componentthaf particles emitted by biomass burning
(Simoneit et. al.,, 1999). It is derived from pyrsily of cellulose and hemicellulose at high
temperatures (Fine et. al., 2001). Several previtudies have recommended using levoglucosan as
an indicator for the tracer of biomass burning eioizs (Simoneit, 2002; Hu et. al., 2013). For
example, Fartas et al. (2009) conducted studigb@determination of levoglucosan in R\nd the
possible sources of emissions occurring from thmbeestion of selected plants found in Malaysia,
and also found that the burning of softwoods predunore levoglucosan than hardwoods.

In focusing on air pollution problems in 8 proviscef upper North of Thailand, the numerous
studies of the air quality, characteristic of BMPM, s and theirs sources especially in the city such as
Chiang Mai, Lamphun and Lampang provinces have begorted (Pengchai et. al., 2009; Chantrara
et. al., 2009Phoothiwut and Junyapoom, 20BHngpiachan, 2013; Tsai et al., 20W8riya et al.,
2013; Khamkaew et al., 2016; Thepnuan et al., 20TBgse problems has not only affected the
visibility, the tourism, and the economy, but alke health of the people living in the areas rasailt
in a lot of extra-governmental budgets spent onpailfution related-treatments. Tak Province is
located in the lower North of Thailand. It is trecend largest province of the North of Thailaneaft
Chiang Mai Province. The unique position and geplgyeof Tak province with its western side join
and form a long boundary with the Republic of tha&dth of Myanmar as well as other provinces in
upper Northern Thailand such as Chiang Rai, ChMagand Mae Hong Son Province, has made it
especially vulnerable to the seasonal air pollutidowever, there were only a few air pollution
studies and none on the RPMstudies in Tak Province regarding both the comptsand its toxicity.
Moreover, investigation of the emission of biomas®wke particles to the RPMis important to find
out the air pollution source in this area. Thetfiysal of this study is to investigate the concatitns
of PAHs and levoglucosan in BMin suburban areas and the second goal is to asekealth risks

of local people for providing empirical data wigktgard to the potential health effects.

2. MATERIALS AND METHODS

2.1 Study Site

The sampling site in this study was situated in MagDistrict, Tak Province (Fig. 1), which is
a district that is located in the west of Tak Pno@ and shares a border with Myanmar. Mae Sot
District is distinctive as a trade hub. It is reéel to as a Special Economic Zone (SEZ) and ibiaéh
to considerable Burmese migrant and refugee papotatThe study site was situated in Mae Sot
Basin, which is surrounded by high mountains witpical and pine forests. It is located at 16° 43'
07" N, 98° 33' 56" E (MSO) and is primarily situatalong the roadside at an altitude of 212.71 m
above sea level. PM pollutionhas rarely been reported on in this aapd there are no recorded data

on the characteristics of PM for this study sitdheéféas the eight provinces of northern Thailand are
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currently receiving a lot of attention with regdadthe air pollution issue and the concentratiam$ a

components of PM for these eight provinces aregotésbeing studied.

2.2 Sample Collection

PM, s samples were collected continuously for five dags month during the period of March
to July 2016 by Mini Volume Portable Air Sampleraatiow rate of 5 L/min within twenty-four-hour
in ambient air. The filters that were used to atlkle samples were 47mm fiber film filtexs € 47
mm, Pallflex T60A20, Pall Corporation, Putnam, @ISA). The filters were weighed at least three
times before and after sampling with a microbala@8135-S/FACT Dual Range Analytical
Balance, METTLER TOLEDO) with an accuracy of 0.0icragram after being conditioned in an
electronic desiccator at 25 °C and with relativentdity of 10% for 24 hr. After collection, sample
filters were stored in a refrigerator at approxietat-20°C until analysis. PM concentrations and
meteorological data were obtained from the Poltut@@ontrol Department (PCD) and Northern

Meteorological Center, respectively.

2.3 Chemicals Analysis

2.3.1 Extraction and PAHs Analysis

In this study, the 16 PAHSs identified by the Unitethtes Environmental Protection Agency
(US-EPA) were analyzed. The results are shown ini€rTd. The half filter of each sample was cut
into small pieces. After that, the filter sampleserev extracted ultrasonically twice with
dichloromethane for 15min at 20° C and then camggfl at 3,000 rpm for 15 min. Next, the solution
was filtered through a 0.2 um syringe PTFE filted ®.1 mL hexane was added. Subsequently, the
solution was evaporated by a gentle stream ofgemayas (N2). The residue solution was added with
the internal standard (Semivolatile Internal StdxMSupelco, USA) and analyzed by gas
chromatography system with mass spectrometry (GGN3010 Series, ShimadZtorporation,
Japan). The column was a DB-5MS column (0.25 moxi2D m and 0.25 pum film thickness, Agilent
technologies Inc. USA) had an initial temperatureeiween 50 °C to 300 °C at 10 °C/min, and these
conditions were then held for 10 min. High-puritgliom was used as the carrier gas at a constant
flow rate of 1.3 mL/min. The injection mode wasitggss and the sample volume was 1 ml. MS
detection was operated in selected ion monitorimglen(SIM). This protocol was carried out using
the method reported by Wang et. al. (2016).

2.3.2 Extraction and Levoglucosan Analysis

The method for levoglucosan analysis was done \iatlg the procedure of Kumagai et al.
(2010). Briefly, one quarter of each filter wasrexted with 5 mL of dichloromethane/methanol (2:1).
The internal standard (1 pL of Levoglucoshpwas added before sample extraction. The extrast w
further evaporated and dried under a stream ofogasaitrogen. Levoglucosan was quantified by

analyzing N, O-Bis (trimethylsilyl)-trifluoroacetdade with 10vol% Chlorotrimethylsilane (BSTFA

4
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with 10vol% TMCS). Results of a gas chromatographihadzu Corporation, Japan) with a 60 m
DB-5MS silica capillary column (Agilent technologiégnc. USA) connected to a mass spectrometry
device (6890GC/5973MS, Agilent Technologies, CA, AYySwas used for the analysis of

levoglucosan.

2.3.3 Quiality control for chemical analysis

The accuracy of PAHs analysis was performed udiegreplications of 0.1 pug/mL of mixed
PAHs standard solution (Semivolatile Internal Stadd Mix 2000 pg/ml in dichloromethane,
Supelco, Merck, USA) to match the method used witinples. The results revealed high recovery
levels (92 — 111%) for all PAHs compounds. Thetiafidetection (LOD) and limit of quantification
(LOQ) values of GC-MS for 16-PAHs analysis wereivknt from six measurements of 0.005 pg/mL
and were mixed with PAHs standard. Results wererdad at 0.28 — 2.40 ng/mL of LOD and 0.92 —
8.01 ng/mL of LOQ. The recovery levels of levoglsan were achieved using the spiking method of
standard solution (0.1, 0.5 and 2.0 mg/L). Theseentrations were spiked in seven replications and
the percent recoveries ranged from 96 — 120%. LO® l2OQ values of GC-MS for levoglucosan
analysis were 0.04 mg/L and 0.13 mg/L, respectivEhe results of repeatability of the method were

evaluated in terms of percentage relative standevdition (%RSD) ranged from 4.0 — 10.6%.

2.4 Health risk evaluation method

The carcinogenic and mutagenic health risks thatioas a result of PAHs exposure can be
calculated by multiplying the concentrations ofle®AH compound. The toxicity equivalents (TEQ)
were calculated based on the toxicity equivaleacydr (TEF) as Eq. 1 (Petry et al., 1996; Tsai.et a
2004; Wang et al., 2011; Benson et al., 20d&hra et al., 2016; Chen et al., 2019 and Ghanhatat
al., 2019 are referred from Nisbet and LaGoy, 199&) the mutagenic equivalents (MEQ) were
computed from the mutagenic equivalency factor (MB& Eqg. 2 (Durant et. al., 1999; Qu et al.,
2015; Balgobin and Ramroop Singh, 2019). AdditipnaBaP was classified as Group 1 by the
International Agency for Research on Cancer (IARG3ble 1) and was used as a representative

marker for mixture exposure to PAHSs.

TEQgap = 0.01(CHR) + 0.01(BghiP) + 0.1(BaA) + 0.1(BbFpA(BkF) + 0.1(IND) + BaP + DahA
(Equation 1)

MEQg.r = 0.082(BaA) + 0.017(CHR) + 0.25(BbF) + 0.11(BkF) 0.29(DahA) +0.19(BghiP) +
0.31(IDP) + BaP
(Equation 2)

The inhalation cancer risk (ICR) was used for estion of the cancer risk from exposure to

PAHs which assessed the association between ICRPamts as a linear function of the TEQ

5
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concentrations and the inhalation unit risk (IUR)Rgap is the inhalation unit risk defined as the risk
of cancer from a lifetime inhalation of unit madsBaP (ni/ug) which specifically, “the calculated,
theoretical upper limit possibility of contractiogncer when exposed to BaP at a concentrationeof on
microgram per cubic meter of air for a 70-yeatrtiifee” (Bari et al., 2011; Jia et al., 2011; Maneti

al., 2016; Wang et al., 2012)

ICR = XTEQgap X IURgsp (Equation 3)

Where: IURp= 1.1x10° m*/ng (Cal-EPA, 2005; US-EPA, 2005)
IURsp= 8.7 x 16 m*/ng (WHO, 2000)

2.5 Backward trajectory calculation

The 24-hour backward trajectories were determingdubing the Hybrid Single-Particle
Lagrangian Integrated Trajectory (HYSPLIT) modelrgkler and Hess, 1998). The backward
trajectories are available online at https://readyoaa.gov/HYSPLIT _traj.php. The trajectories aver
computed every day at the same sampling site &stigate the air mass that was transported from the

originated source to the receptor site.

3. RESULTS AND DISCUSSION
3.1 Concentration of PM

The data on PM concentrations were obtained from PCD, while,RNoncentrations were
collected from the ambient air samples using Minline Portable Air Sampler during the period of
March to July 2016 in Mae Sot District. The resuitsied from 65.8 — 128.2 and 3.3 — 12adint,
respectively and were highest in March. The sedsohspatial variations in PM concentrations are
presented in Fig 2. The mean averages of,RiMd PM s concentrations were recorded at 89.0 +
17.2, 60.5 + 27.9ug/n? during the dry season (March - April), 84.6 + 188.9 + 8.5ug/n and
during the transitional period (May), respectivdlythe wet season (June — July), the mean averages
of PM,s concentrations were recorded at 13.8 #* ﬁgﬁm3 according to the data of BM
concentrations of the PCD that were recorded dutiegperiod of January — May. The results of the
PM, s concentrations recorded during March — May (61622.85ug/n7’) exceeded the acceptable
24-hr levels according to the National Ambient Quality Standards (NAAQS) in Thailand (50
ng/nt). Accordingly, this period was classified as a km@pisode (episode). On the other hand,
PM,s concentrations recorded from late June to July7@3 5.58pug/n?) did not exceed the
standards of the NAAQS which classified this pera@da non-smoke episode (non-episode), while
PMy, concentrations recorded during the sampling peeiceeded 12Qig/n?® only on the 28 of
March. The variations of mean PM concentrationslarstrated in Table 1. The concentration values

of PM, s recorded during the episode were significantlyhbigthan those recorded during the non-
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episode. This was probably due to the open buraatiyities that typically occur during this period,
which included the lighting of wildfires and theragltural burning that takes place in rural araad

in neighboring countries. In addition, these resuéivealed a pattern that agreed with the pattern
variations presented in previous reports produgechdrthern Thailand (Chantrara et. al., 2009;
Pengchai et. al., 2009). In addition, the topogyaphthe North of Thailand is mainly comprised of
high mountains and pan basins, which give riseetoperature inversion or stagnant meteorological
conditions in the dry season. Conditions involvev lcelative humidity levels, low dew point
temperatures and light winds that are indicativeaoftable atmosphere as has been previously

reported (Amnuaylojaroen and Kreasuwun, 2012; Poogkand Jinsart, 2014).

3.2 PM, sbound PAHs and their health risks

The total concentrations of 16 US-EPA PAHs rangethf2.29 - 11.36 ng/frand the highest
total 16PAHs were recorded on MarcH"26.36 ng/m, while 2.29 ng/mwas recorded as the lowest
concentration on June™5The variations of mean and standard deviation) (BDeach PAHs
compound during both the episode and non-episodedseare shown in Table 1. The proportion of
each PAH compound to the total of the PAHs wasutaled in percentage to show the profile of the
PAHs and the temporal variations of PMound PAHs during the sampling period, and theltges
are presented in Fig. 3. The major PAHs compoundsis study included PHE 21%, BghiP 17%,
BbF and IDP 12%. Additionally, the descending oroieb PAHs compounds (ngfjnwere BghiP >
PHE > IDP > BbF > BaP recorded during the smokégdeand PHE > BghiP > DahA > IDP > BaP
recorded during the non-smoke period. The resalbsvghat the concentrations of PHE and BghiP
were dominant during both episodes. Previous stutB@orted that Southeast Asia countries, i.e.
Thailand, normally found a high proportion of BgaiBnd IDP compounds (Kim Oanh et al., 2000;
Chantara et al., 2009; Chuesaard et al., 2014)er8keprevious research studies have suggested the
use of PAH compounds as tracers to identify thecgsuof pollution. These results concurred with
those of other studies (Freeman and Cattel, 198@;d. al., 2010), where it was found that BghiP,
IDP, BaP, BbF, BKF were the predominant PAHs, whkitealler proportions of BaA, PHE, ANT,
PYR, FLA and CHR were found in the softwood burnamissions. Accordingly, Shen et al. (2011)
found that the dominant particulate-bound PAHs vk (20 + 12%), FLA (11 = 7%), FLO (11 £
7%), and PYR (10 +7%) from indoor crop residue Ingnin a typical rural stovelikewise,
Chuesaard et al. (2014) referred from Kulkarni ®iedkataraman (2000) considered using the BaP as
a biomass burning tracer, while BhgiP and IDP a&swhhicle exhaust tracers. On the other hand,
Miguel et al. (1998) reported that the higher molacweight PAHs (HMW-PAHS) such as BaP and
DahA were the dominant emissions occurring fromotyas vehicles, while diesel trucks emitted
HMW-PAHs such as BaP, BghiP, IDP and DahA at higteicentrations than duty vehicles. And

also Bostrom et al. (2002) presented the BghiP ssuace specific indicator for gasoline vehicles.
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Fig. 5 illustrated the temporal variations of RMlevoglucosan and tPAHSs levels, which reveal a
similar variation pattern. Moreover, the total PAEsncentrations during the episode were higher
than those of the non-episode with statisticalifigance ¢ < 0.05). Accordingly, the concentrations
of each PAHs compound recorded during the smoksodpiwere higher than those recorded during
the non-episode, whilst pyrene (PYR) levels inntba-episode period were higher than in the episode
period. Consequently, the concentrations of BgRRE, IDP, BbF and BaP recorded during the
smoke episode indicated that the possible sourfcas pollution at this study site occurred notynl
from vehicle emission, but also from the increabeunass burning activities that go on during the
dry season. These results agree with those of sthédies (Chantara et. al., 2010; Phoothiwut and
Junyapoom, 2013; Chuesaard et. al., 2014).

The health risks were evaluated by calculating TE€)}.» and MEQ,p values, particularly
BaP, which is classified as a Class 1 carcinogentimans by the International Agency for Research
on Cancer (IARC). The individual PAHs concentrasimsed in the calculation included CHR, BghiP,
BaA, BbF, BKF, IND, BaP and DahA. The ambient &{and MEQ.r levels in this study ranged
from 0.41 — 3.14 ng/hand 0.34 — 3.35 ngfinrespectively. The highest values of TEQand
MEQzgp Were recorded on the ®@&larch 2016. This study found that the TEfand MEQ,p values
recorded during the episode were three times stgmifly higher than those recorded in the non-
episode, as illustrated in Table 1. In the smoksagle, the mean TEQ values in MSO (1.57 £ 0.67
ng/nt) was lower than those in April 2010 (3.[@/n?) and higher than those in January — March
2011 (0.25 ng/f) while those in the non-smoke episode (0.53 + @TT) was higher than those in
Aug — Nov 2010 (0.18 ngfnin Chiang Mai Province (Wiriya et al., 2013). Fafore, the study by
Wiriya et al. (2016) showed that the TEQ value bf;Rbound PAHs obtained from the burning of
leaf litter was higher than in the burning of maiesidue and rice straw. Notably, the burning af le
litter emitted higher amounts of pollutants thae turning of agricultural residue. The relationship
between TEQp, MEQs.,r and tPAHs concentrations are shown in Table 3h luft correlation
coefficient between TEgr and tPAHs value and MEf and tPAHs value in MSO were strongly
significant < 0.01). Furthermore, the correlation between Balivalent (TEQ.,; and MEQ,p) and
tPAHs in the smoke episode was greater than thogbei non-smoke episode and the correlation

coefficientof mutagenic equivalent was higher than carcinageguivalent in both episodes.

The potential inhalation lifetime lung cancer ri@dd CR) of human exposure to PAHs was
evaluated by calculating the ICR based on BaP etpntv. This study employed the IUR
recommended by California Environmental Protectigency (Cal-EPA) and the United States
Environmental Protection Agency (US-EPA) of 1.1¥1@g/n? and World Health Organization
(WHO) of 8.7 x 10 ng/n? for 70 years of lifetime (Cal-EPA, 2005; US-EPA0%; WHO, 2000; Jia
et al., 2011). The mean IGBrans sap Values in this study were 1.27 x%@nd 10.02 x 10 for
carcinogenic risk and 1.28 x $010.09 x 10 for mutagenic risk based on EPA and WHO,

8
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respectively. In addition, the ICR values of botE(E.r and MEQ.r Obtained during smoke episode
were 3 times significantly higher than that of ttem-smoke episode. Moreover, the LLCR values that
calculated based on WHO were higher than the vahetswere calculated based on EPA (Fig. 4).
The similar results were also observed in Zarag8pajn (Callén et al., 2014), Amazon region (de
Oliveira Alves et al., 2015) and Kuala Lumpur, Mal& (Sulong et al., 2017). Furthermore, it was
found that the values of LLCR based on both of Bt WHO techniques were higher than the
estimation of the previous study for the 70 yedrdifetime ICR from of PMsbounded PAHSs
(XPAH12-BaPeq) of northern Thailand in 2012 - 2018n@piachan et al., 2015a). However, these
values were lower than those in Guangzhou, Chirg8(8 10%) (Liu et al., 2015). Thereupon based
on US-EPA, the acceptable level of risk is one cham a million (LLCR = 10) or less of
developing human cancer over a lifetime (70 yeans) one case in ten thousand people (LLCR= 10
%) is a very high potential risk (Greene and Mor2806; Sun et al., 2016). The LLCR values in the
smoke episode were over the acceptable canceforigkcancer cases per million people in this study
area. The period of PAHs exposure from biomassibgreeason is not a long time, but the dose

exposure is extremely high and repeated in eveay. ye

3.3 Levoglucosan concentrations

Levoglucosan, 1,6-anhydride of glucose, is the pecoaf the degradation of products from
cellulose and it is stable in the atmosphere.dtagents a fraction marker for biomass burnindén t
form of wood burning and wildfires (Hoffmann et.,8010). The concentrations of levoglucosan in
this study ranged from 0.08 — 1.95 pd/and the average concentration values recordethan t
episode and non-episode were 1.00 + 0.41 and 0.0203 pg/m, respectively (Table 1). The
temporal variations of levoglucosan are shown m Bi This factor has cleared the biomass burning
pattern with very high emissions occurring in Mattinough May and low emissions during the
remaining months. Accordingly, the results showt tiae levoglucosan concentrations were
significantly higher during the episode than thaseorded in the non-episode. The correlation
between levoglucosan, BMand individual PAHs compounds during the smoke aad-smoke
episodes were calculated, and the Pearson coorelatoefficients (r) are listed in Table 2.
Levoglucosan concentrations revealed a signifigasttiong correlation with Pp4, FLU, BbF, BaP,
IDP, DahA, BghiP and tPAHs during the smoke episodeile it was not significantly correlated
during the non-smoke episode. These results camelgal with those of previous research studies
involving biomass tracers, which found that levagisan was a concomitant in the fractions of PM
being emitted from biomass burning. Consequettilyse studies revealed that there was an increase
in biomass burning emissions resulting in increaaiedoollutant concentrations in the ambient air
(Bari et. al., 2010; Chuesaard et. al., 2014).

Furthermore, the relationship between EEand MEQ,p and levoglucosan concentrations

are shown in Fig. 6. Both the correlation coeffitgeebetween the TEL and levoglucosan values
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323 and MEQgrand levoglucosan values at this study site tha¢wecorded during the smoke episode (r
324 = 0.753 and 0.761, respectively) were higher thersd in the non-smoke episode (r = -0.245 and -
325 0.287, respectively). These results confirm tha thcreasing biomass influences in the smoke
326  episode could potentially present a carcinogersk 1 health and a greater mutagenicity risk than
327 those same influences in the non-smoke episodeefiiie, the health effects of PM exposure depend
328 upon certain physical characteristics, such adthathing mode of the inhabitants (volume and rate
329 of a person), the size of particulates and theceWfeness of PM exposure by local area conditions
330 (e.g. topography, weather and seasons), source$Mf concentrations being emitted and
331 microenvironments (Brown et al., 2013; Casati t24107; Kim et al., 2015).

332

333 3.4 Relationship of PMsconcentrations to other air pollutants and Meteagickal concentrations

334 The correlation between BMlevels to air pollutants and meteorological comcdions was
335 analyzed by Spearman rank correlation analysis.réfigts found that the PMconcentrations had a
336  strong positive correlation with tPAHs, TEQ and MEQ.s levoglucosan concentrations and
337 temperature (Temp)(< 0.01), and a significant degree of correlatiathwwPM,o at p < 0.05 as is
338 shown in Table 3. On the other hand, the incre@sedpitation (rain) and relative humidity (%RH)
339 values established negative relationships with, PMPAHs and levoglucosan with statistical
340 significance at a confidence level of 0.01. Notablynd speed (WS) yielded a negative correlation
341  with PM,s, but without statistical significance. These resulere similar to those of previous studies
342 such as Owoade et al. (2012), Jayamurugan et@l3J2and Chen et al. (2016). The effects of the
343  meteorological parameters typically fluctuate iffedent regions of the world. The important factors
344  such as temperature, %RH and wind can influenceigpersion, transport and removal of particulate
345 matter in the atmosphere (Munir et al., 2017). Blreng positive correlation between Pivand
346 temperature was due to the temperature and couwe kéffected the formation of secondary
347  particulate matters in the atmosphere. This mag lien the case as high temperatures pay a role in
348  photochemical reaction precursors (Wang and Oga@a5; Munir et al., 2013). Wet deposition is
349 one of the important mechanisms for removing ailugon by washing out PM and organic
350 pollutants from the atmospheric to the ground (@ual., 2014). The negative relation coefficient
351 obtained might have been a result of the washoegham@sm of rainfall that occurs by reducing the
352  atmospheric particulate pollution and covariatetdex of atmospheric pressure and ambient
353 temperature (Guo et al., 2016; Chen et al. 201@)ditfonally, high humidity can reduce BM
354  concentrations as particles expand to become taayite dwell in the ambient air. Conversely, when
355  hygroscopic influences grow along with low humiditige PM sconcentrations are increased (Wang
356 and Ogawa, 2015; Lou et al., 2017). The precipitatiata recorded during the sampling of Rére
357 shown in Fig. 2. All the sampling during the nonsegle period occurred on rainy days. Therefore,

358 the rain that fell on the sampling days resultedd@étreased concentrations of particulate matter,
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tPAHs and levoglucosan. Thus, rainfall was an irtgrfactor that effectively resulted in a reduatio
the pollutants in the ambient air during the norokenepisode. On the 2&f March during the
smoke episode, the levels of PM and tPAHs in tHei@amts were slightly reduced as a result of the
rainfall. This might have been the case becausadtrained for a short period of time and the arhoun
of rainfall was minimal (2.2 mm) on this occasidm.addition, the air mass movement was not only
influenced by the local area, but also from theation of the southeast, as is illustrated in Fig.
Several studies have correlated the occurrencaioffall with a reduction in the particulate matter
present in the atmosphere with regard to the amduequency, intensity, and the number of
consecutive rainy day®ian et al. (2009) found that the frequency anduam of precipitation are
both significantly decreased during periods of hpgtlution. On the other hand, Choi et al. (2008)
reported that the aerosol concentrations over abeuraf days were positively associated with the
days of moderate-rainfall frequency (10-20 mm/day, negatively correlated with the days of light-

rainfall frequency (5 mm/day).

3.5 Backward trajectories of air movement

The Hybrid Single-Particle Lagrangian Integratedijé@ctory (HYSPLIT) model (Internet-
based) developed by the Air Resource LaboratoryLjAdt the National Oceanic and Atmospheric
Administration (NOAA) was used to compute the 24xhd 72-hr backward trajectory values at 16.00
UTC in each day of the sampling period in this gtuthe air mass trajectories were used to interpret
the transport pathways of infinitesimally small tides as they move through time and space (Stohl,
1998; Wang et al., 2010). Backward trajectory rdedrduring each sampling month showed the
arrival height of 500 m above ground level (AGL)g(F7) identify the source regions and long-range
transports of air mass (Kim Oanh and Leelaskult?@i,1b; Crosbie et al., 2014). As shown in the
study done by Zhu et al. (2011), for the recep®aglts of 100 - 1000 m, the transport pathways were
not significantly different, whereas the trajecésricould increase the length of transport with the
receptor height. The 24 or 72 hr backward trajeesoare frequently used in previous studies (Wiriya
et al., 2013; Xin et al., 2016; Sun et al., 2017he 24 hr backward trajectories, with its smaller
trajectory position errors, have been used to tnyai® the possible sources of regional emissiah an
elucidate the regional transport pathways (Warg.eR010; Godlowska et al., 2015). Increasing the
time of trajectories could trace the increase ingloange transport pathway. In addition, Fig 7
illustrated the accumulated 7 days of hotspotsngusampling in each month. Hotspot analysis is the
primary tool to locate the patterns of the for@st déccurrence (Feltman et al., 2012; Said eb8all7).
In this study, hotspot data was derived from MotierResolution Imaging Spectroradiometer
(MODIS) on board the Terra (EOS AM-1) and Aqua (EPI8-1) satellites from the NASA’s Earth
Observatory website (https://earthdata.nasa.gov).

Most of the data model showed that the air massemewt was from a westerly direction.

During the smoke episode, the major direction o thackward trajectory originated from the
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continental area of Myanmar before arriving in Mz District except for the backward trajectory in
March which showed the originated of air mass mdy rom Myanmar but also from the local area
and Cambodia (Fig 7(a-c). Besidése map of hotspots shows that the accumulated/d ldatspots
were very high at both local area and neighbormgntries. Likewise, the pathway of air mass moved
over the areas showing a high accumulated numbéwotsipots before arriving at the study sites.
Numerous studies have reported that the air massgort pathways significantly correlated with
spatial and temporal variations of pollutants. Hswconsidered that under propitious atmospheric
conditions the air mass parcels can transportquéate matters and other pollutants generated from
the open-burning areas (Chuang et al., 2016; Lal.e2013; McGowan and Clark, 2008). As a result
in this study, the close correlation between,Rlnd levoglucosan concentrations and the peak of
hotspot activity during the smoke episode implileat tthe high concentration of BMduring this
period was from biomass burning emission. Althotigh air mass trajectory during the non-smoke
episode generated in the Andaman Sea, it was weesiby the air mass that blew through Myanmar
to the receptor site (Fig. 7(d-e). The air massspart was not affected by the hotspot activityhis
episode. This is concordant with the reported wdiréction in Chiang Mai Province in 2010 and
2011 (Wiriya et al., 2013). In the details, the hvaard trajectory values recorded during the non-
smoke episode moved directly from a southwest timednto the receptor sites and had a longer
trajectory than those recorded during the smoksoelgi. This would indicate the presence of a
significantly high-wind speed regimes (P6hlker ket 2018) and long-range transport pathway over
the Andaman Sea and Myanmar to the sampling diteaddition, the increase of the wind speed

would decrease the concentration of RWang et al., 2017).

4.CONCLUSIONS

Mae Sot District is located in Tak Province, whista province in western Thailand. Notably,
the air pollution issue in Tak Province during tiry season is not different from that of northern
Thailand. The results in this study reveal that tdmaporal variations of PM concentrations, and
other air pollutants such as PAHs and levoglucodeplayed a similar trend with those of previous
studies conducted in Chiang Mai, Lamphun and Lamp@arovinces. The peak concentrations in
those studies were recorded in March. The averdg®M,s tPAHs and levoglucosan were
significantly higher when recorded in the smokesege than in the non-smoke episode. The
predominant compounds of PAHs are PHE and Bghilboth episodes that can emit from not only
vehicles but also biomass combustion. Howevelindlvidual PAHs concentrations recorded during
the smoke episode were significantly higher thanrtn-smoke episode except for PYR (indicating a
vehicle source). The concentrations of levoglucosare strongly correlated with RMand tPAHs
during the smoke episode that can identify the am@mission from biomass burning. Thus, these
results can confirm that the sources of air pallutiat the study site not only involved traffic

emissions but also occurred fromcreasing biomass burning during the dry seastre Auman

12



433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

452

453
454

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

health risks of PMls-bound PAHs exposure evaluated from EEand MEQ.r showed that the
smoke episode could increase a potential humarthhgak higher than those in the non-episode
period. As a result, the LLCR during smoke episodere higher than the acceptable level of
augmentative human cancer risk over a 70-yearinitet(US-EPA). During the smoke episode,
backward trajectories have revealed that the pnadilie air masses that moved over the burning areas
as showed the high hotspot activity were not omhytted from local areas, they were also emitted
from outside the country like Myanmar and Cambodlzerefore, the most air masses were generated

from the western region of Thailand.
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Table 1 Range and mean of PAHs, PM and meteorological values measured during sampling period

Mean + SD
Parameter Abbreviation [0) L’;ESS Unit

Episode Non-episode
Naphtalene NAP 128 0.02+0.01 ND
Acenaphtylene ACY 152 0.10 £ 0.05 0.06 +0.03
Acenaphtene ACE 154 0.02 £0.02 ND
Fluorene FLU 166 3 0.06 £ 0.04 0.02£0.01
Phenanthrene PHE 178 3 1.04 £ 0.03 0.99+£0.01
Anthracene ANT 178 3 0.31+0.07 0.21+0.01
Fluoranthene FLA 202 3 0.11+0.02 0.05+0.01
Pyrene PYR 202 3 0.02+0.01 0.16 + 0.04
Chrysene CHR 228 2B 0.06 + 0.05 ND
Benz[a]anthracene BaA 228 2B 0.29 +0.06 0.16 +0.02 ng/m?
Benzo[b]fluoranthene BbF 252 2B 0.84 +0.48 0.16 +0.03
Benzo[K]fluoranthene BKF 252 2B 0.20+0.13 0.02 +0.03
Benzo[a]pyrene BaP 252 1 0.70 £ 0.33 0.21+0.06
Indeno[1,2,3-cd]pyrene IDP 276 2B 0.85+0.39 0.22 +0.04
Dibenz[a,h]anthracene DahA 278 2A 0.65 = 0.27 0.26 +0.03
Benzo[ghi]perylene BghiP 276 3 1.21+0.63 0.26 £ 0.07
Total PAHs tPAHSs 6.32£2.26 259+ 0.15
Toxicity equivalent TEQgar 1.57 £ 0.67 0.53+£0.07
Mutagenic equivalent MEQgap 1.63+£0.76 0.46 £ 0.06
Particulate matter (2.5) PMzs 61.64 £ 22.85 13.76 + 5.58 pg/m?
Particulate matter (10) PM1o (Mar - May 2016) 87.55+17.19 - pg/m?3
Levoglucosan Levo 1.00+041 0.12+£0.03 pg/m?3
Temperature Temp 30.63+1.34 26.40£0.74 °C
Relative humidity RH 58.72 + 4.89 85.19 £ 2.95 %
Rainfall RN 0.15+0.57 6.46 + 8.63 mm
Wind speed WS 32.84 +5.31 32.41 +7.00 km/hr

2 QI = Quantification ion (m/z)
® The IARC Classified: 1= Carcinogenic to humans; 2A = Probably carcinogenic to humans; 2B = Possibly
carcinogenic to humans; 3 = Not classifiable as to its carcinogenicity to humans

ND = Not detected



Table 2 Correlations between concentrations of levoglucosan, PM2s and PAHSs in both episodes

Episode Non
Levo 1 1
PMas 0.795** 0.088
Nap -0.547 a
ACY -0.295 0.054
ACE 0.488 a
FLU 0.775** a
PHE -0.081 0.014
ANT -0.482 0.473
FLA 0.514* -0.033
PYR -0.013 a
CHR 0.3 a
BaA 0.592* 0.124
BbF 0.736** -0.579
BkF 0.545 a
BaP 0.723** -0.125
IDP 0.796** -0.041
DahA 0.698** -0.233
BghiP 0.782** -0.006
tPAHs 0.760** -0.251

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).
a Cannot be computed because at least one of the variables is constant.

Table 3 Correlations between concentration of PM; s and other parameters

PM2s PM1o tPAHs TEQ MEQ Levo Temp RH Rain WS
PMzs 1 0.630*  0.810** 0.769** 0.827** 0.864** 0.590** -0.678** -0.515** -0.134
PM1o 1 0.263 0.077 0.204 0.671**  0.068 -0.359 a -0.016
tPAHSs 1 0.928** 0.961** 0.831** 0.445* -0.576** -0.471* -0.242
TEQgar 1 0.973** .827(**) 0.505*  -0.578** -0.475* -0.314
MEQsgap 1 0.839**  0.486* 0.578**  -0.439* -0.319
Levo 1 0.545** -0.653** -0.601** -0.173
Temp 1 -0.927*%*  -0.387 0.357
RH 1 0.464* -0.291
Rain 1 0.246
WS 1

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).
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Fig. 2 Seasonal and spatial variations of PM cotnagans during sampling period.
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Table 1 Range and mean of PAHs, PM and meteorabgitues measured during sampling period

Mean + SD
Parameter Abbreviation 1Q IC'T(;E Unit

Episode Non-episode
Naphtalene NAP 128 0.02+0.01 ND
Acenaphtylene ACY 152 0.10 £ 0.05 0.06 £0.03
Acenaphtene ACE 154 0.02 £ 0.02 ND
Fluorene FLU 166 3 0.06 + 0.04 0.02 +0.01
Phenanthrene PHE 178 3 1.04 +0.03 0.99+0.01
Anthracene ANT 178 3 0.31+0.07 0.21+0.01
Fluoranthene FLA 202 3 0.11 +0.02 0.05+0.01
Pyrene PYR 202 3 0.02+0.01 0.16 + 0.04
Chrysene CHR 228 2B 0.06 + 0.05 ND
Benzfg]anthracene BaA 228 2B 0.29 + 0.06 0.16 + 0.02 ng/n?
Benzop]fluoranthene BbF 252 2B 0.84 +0.48 0.16 £0.03
BenzoK]fluoranthene BkF 252 2B 0.20+£0.13 0.02+0.03
BenzoR]pyrene BaP 252 1 0.70£0.33 0.21+£0.06
IndenofL,2,3-cd]pyrene IDP 276 2B 0.85+0.39 0.22+£0.04
Dibenzp,hjanthracene DahA 278 2A 0.65+0.27 0.26 £0.03
Benzophi]perylene BghiP 276 3 1.21+0.63 0.26 £ 0.07
Total PAHs tPAHs 6.32 +2.26 2.59+0.15
Toxicity equivalent TEQs 1.57 +0.67 0.53+0.07
Mutagenic equivalent MEgr 1.63+0.76 0.46 + 0.06
Particulate matter (2.5) PM 61.64 + 22.85 13.76 + 5.58 pg/m
Particulate matter (10) PM (Mar - May 2016) 87.55+17.19 - pgim
Levoglucosan Levo 1.00+£041 0.12 +0.03 pgfm
Temperature Temp 30.63+1.34 26.40 £ 0.74 °C
Relative humidity RH 58.72 + 4.89 85.19+2.95 %
Rainfall RN 0.15+0.57 6.46 + 8.63 mm
Wind speed WS 32.84 +5.31 32.41+7.00 km/hr

& QI = Quantification ion (m/z)

® The IARC Classified: 1= Carcinogenic to humans; 24°robably carcinogenic to humans; 2B = Possibly
carcinogenic to humans; 3 = Not classifiable astoarcinogenicity to humans

ND = Not detected



Table 2 Correlations between concentrations afdewcosan, PMs and PAHSs in both episodes

Episode Non

Levo 1 1

PM,. 0.795** 0.088

Nap -0.547 a
ACY -0.295 0.054
ACE 0.488 a
FLU 0.775* a

PHE -0.081 0.014
ANT -0.482 0.473
FLA 0.514* -0.033
PYR -0.013 a
CHR 0.3 a
BaA 0.592* 0.124
BbF 0.736** -0.579
BkF 0.545 a
BaP 0.723* -0.125
IDP 0.796** -0.041
DahA 0.698** -0.233
BghiP 0.782** -0.006
tPAHSs 0.760** -0.251

** Correlation is significant at the 0.01 level {@ied).

* Correlation is significant at the 0.05 level @ted).

a Cannot be computed because at least one of tiadbles is constant.

Table 3 Correlations between concentration of, Pdhd other parameters

PM, ¢ PM; tPAHs TEQ MEQ Levo Temp RH Rain WS
PM,e 1 0.630*  0.810** 0.769** 0.827** 0.864** 0.590* 0.678* -0.515* -0.134
PMy¢ 1 0.263 0.077 0.204 0.671* 0.068 -0.359 a -0.016
tPAHs 1 0.928* 0.961** 0.831** 0.445* -0.576** -0.471* 0.242
TEQgar 1 0.973** .827(**) 0.505* -0.578** -0.475* -0.314
MEQgar 1 0.839**  0.486* 0.578**  -0.439* -0.319
Levo 1 0.545* -0.653** -0.601** -0.173
Temp 1 -0.927**  -0.387 0.357
RH 1 0.464* -0.291
Rain 1 0.246
WS 1

** Correlation is significant at the 0.01 level {@ied).

* Correlation is significant at the 0.05 level @ked).



Hightlights:

* Mae Sot District, Tak Province, Thailand was aféglctvith crisis of PMs concentration in
burning season, the same as the northern Thailand.

» Levoglucosan indicated the emission sources of HMm biomass burning.

» Lifetime lung cancer risk during smoke episode exiesl the acceptable cancer risk of US-
EPA's recommended.

* Most air masses generated from the western redidrhailand and blew through burning
areas to the study site during the smoke episode.



